We determine the average number ϑ(N,K) of NK-Kauffman networks that give rise to the same binary function. We show that for N1, there exists a connectivity critical value Kc such that ϑ(N,K)eφN(φ>0) for K<Kc and ϑ(N,K)1 for K>Kc. We find that Kc is not a constant but scales very slowly with N as Kclog2log2(2Nln2). The problem of genetic robustness emerges as a statistical property of the ensemble of NK-Kauffman networks and impose tight constraints in the average number of epistatic interactions that the genotype-phenotype map can have.

1.
2.
S. A.
Kauffman
,
The Origins of Order: Self-Organization and Selection in Evolution
(
Oxford University Press
,
New York
,
1993
).
3.
J. M.
Vargas
,
H.
Waelbroeck
,
C. R.
Stephens
, and
F.
Zertuche
,
BioSystems
51
,
1
(
1999
).
4.
M.
Aldana
,
S.
Coppersmith
, and
L.
Kadanoff
,
Perspectives and Problems in Nonlinear Science
(
Springer
,
New York
,
2003
), pp.
23
89
.
5.
B.
Derrida
and
H.
Flyvbjerg
,
J. Phys. (Paris)
48
,
971
(
1987
).
6.
H.
Flyvbjerg
and
N. J.
Kjaer
,
J. Phys. A
21
,
1695
(
1988
).
7.
B.
Drossel
,
T.
Mihaljev
, and
F.
Greil
,
Phys. Rev. Lett.
94
,
088701
(
2005
).
8.
B.
Samuelsson
and
C.
Troein
,
Phys. Rev. Lett.
90
,
098701
(
2003
).
9.
J. E. S.
Socolar
and
S. A.
Kauffman
,
Phys. Rev. Lett.
90
,
068702
(
2003
).
10.
B.
Derrida
and
Y.
Pomeau
,
Europhys. Lett.
1
,
45
(
1986
);
B.
Derrida
and
D.
Stauffer
,
Europhys. Lett.
2
,
739
(
1986
).
11.
M. D.
Kruskal
,
Am. Math. Monthly
61,
392
(
1954
);
H.
Rubin
and
R.
Sitgreaves
, Applied Mathematics and Statistics Laboratory, Stanford University Technical Report No. 19A,
1954
(unpublished);
J. E.
Folkert
, Ph.D. dissertation,
Michigan State University
,
1955
;
B.
Harris
,
Ann. Math. Stat.
31
,
1045
(
1960
).
12.
D.
Romero
and
F.
Zertuche
,
J. Phys. A
36
,
3691
(
2003
).
13.
D.
Romero
and
F.
Zertuche
,
Stud. Sci. Math. Hung.
42
,
1
(
2005
).
14.
B.
Lewin
,
GENES VIII
(
Prentice-Hall
,
Englewood Cliffs, NJ
,
2004
).
15.
S. A.
Kauffman
,
BioEssays
6
,
82
(
1986
);
in
Integrating Scientific Disciplines
, edited by
W.
Bechte
(
Martinus Nijhoff
,
Dordrecht
,
1986
).
16.
A.
Wagner
,
Evolution (Lawrence, Kans.)
50
,
1008
(
1996
).
17.
A.
Wagner
,
Robustness and Evolvability in Living Systems
(
Princeton University Press
,
Princeton, NJ
,
2005
).
18.
J. A. G. M.
de Visser
 et al.,
Evolution (Lawrence, Kans.)
57
,
1959
(
2003
).
19.
M. G.
Goebel
and
T. D.
Petes
,
Cell
46
,
983
(
1986
);
[PubMed]
C. A.
Hutchison
 et al.,
Science
286
,
2165
(
1999
);
[PubMed]
G.
Giaver
 et al.,
Nature (London)
418
,
387
(
2002
).
20.
J. W.
Thatcher
,
J. M.
Shaw
, and
W. J.
Dickinson
,
Proc. Natl. Acad. Sci. U.S.A.
95
,
253
(
1998
).
21.
G.
Weisbuch
,
Complex Systems Dynamics
(
Addison-Wesley
,
Redwood City, CA
,
1991
);
22.
S. A.
Kauffman
,
Curr. Top Dev. Biol.
6
,
145
(
1971
);
[PubMed]
S. A.
Kauffman
,
Cybernetics
1
,
71
(
1971
);
S. A.
Kauffman
,
J. Theor. Biol.
44
,
167
(
1974
).
[PubMed]
23.
S. A.
Kauffman
and
J. J.
Wille
,
J. Theor. Biol.
55
,
47
(
1975
);
[PubMed]
R. S.
Shymko
,
R. R.
Klevecz
, and
S. A.
Kauffman
, in
Cell Cycle Clocks
, edited by
L. N.
Edmunds
,Jr.
(
Dekker
,
New York
,
1984
);
A. T.
Winfree
,
The Geometry of Biological Time
,
Lecture Notes in Biomathematics
Vol.
8
(
Springer
,
New York
,
1980
);
When Time Breaks Down
(
Princeton University Press
,
Princeton, NJ
,
1987
).
You do not currently have access to this content.