A method for determining the eigenfunctions of the equation ×B=λB for finite cylindrical geometry with normal boundary condition Bn̂=0 and nonaxisymmetric modes eimθ,m0 was given by Morse [J. Math. Phys.46, 113511 (2005)] This method uses series solution of a Chandrasekhar-Kendall [Astrophys. J.126, 157 (1957)] function. Here this method is generalized to include annular (coaxial) cylindrical geometry of finite length. The method is also applied to the case of rectangular duct geometry with periodic z-dependence. For slender aspect ratios in the annular cylinder, the eigenfunctions and eigenfields correspond to the rectangular duct. The eigenfunctions for finite-length rectangular boxes can also be obtained from the rectangular duct case. The robust convergence properties (an1n4) and simple eigenvalue equations from Morse are retained in these other geometries.

1.
E.
Morse
,
J. Math. Phys.
46
,
113511
(
2005
).
2.
E.
Beltrami
,
Rend. Reale Inst. Lombardo di Sci. Lett.
22
,
122
(
1889
)
E.
Beltrami
[
Intl. J. Fusion Energy
3
,
53
(
1985
)].
3.
V.
Trkal
,
Časopis pro pĕstování Mathemakity a Fysiky
48
,
302
(
1919
).
4.
L.
Woltjer
,
Proc. Natl. Acad. Sci. U.S.A.
44
,
489
(
1958
).
5.
J. B.
Taylor
,
Phys. Rev.
33
,
1139
(
1974
);
J. B.
Taylor
,
Rev. Mod. Phys.
58
,
741
(
1986
).
6.
G.
Knorr
,
M.
Mond
, and
C.
Grabbe
,
J. Plasma Phys.
53
,
373
(
1995
).
7.
H.
Chen
,
X.
Shan
, and
D.
Montgomery
,
Phys. Rev. A
42
,
6158
(
1990
);
[PubMed]
H.
Chen
,
X.
Shan
, and
D.
Montgomery
,
Phys. Rev. A
44
,
6800
(
1991
).
[PubMed]
8.
D. D.
Hua
,
T. K.
Fowler
, and
E. C.
Morse
,
J. Plasma Phys.
66
,
275
(
2001
).
9.
Z.
Yoshida
and
Y.
Giga
,
Math. Z.
204
,
235
(
1990
).
10.
S.
Chandrasekhar
and
P. C.
Kendall
,
Astrophys. J.
126
,
157
(
1957
).
11.
E.
Morse
,
Phys. Plasmas
5
,
1354
(
1998
).
You do not currently have access to this content.