We construct SU(2) calorons, with nontrivial holonomy, instanton charge 2 and magnetic charge 0 or ; these calorons have two constituent monopoles, with charges (2,2) or (2,1). Our calorons are U(1) symmetric and are constructed via the Nahm transform. They fall into distinct families which can be classified using representation theory. We consider large scale and large period limits of these calorons; in particular, the large scale limit may be a monopole, or a caloron with different topological charges.
REFERENCES
1.
Atiyah
, M. F.
and Manton
, N. S.
, “Geometry and kinematics of 2 skyrmions
,” Commun. Math. Phys.
153
, 391
–422
(1993
).2.
Bruckman
, F.
and van Baal
, P.
, “Multi-caloron solutions
,” Nucl. Phys. B
645
, 105
–133
(2002
).3.
Bruckman
, F.
, Nógrádi
, D.
, and van Baal
, P.
, “Constituent monopoles through the eyes of fermion zero-modes
,” Nucl. Phys. B
666
, 197
–229
(2003
).4.
Bruckman
, F.
, Nógrádi
, D.
, and van Baal
, P.
, “Multi-caloron solutions
,” Nucl. Phys. B
698
, 233
–254
(2004
).5.
Chakrabarti
, A.
, “Periodic generalizations of static, self-dual su(2) gauge fields
,” Phys. Rev. D
35
, 696
–706
(1987
).6.
Chen
, X.
and Weinberg
, J. E.
“Atiyah-Drinfeld-Hitchin-Manin-Nahm boundary conditions from removing monopoles
,” Phys. Rev. D
67
, 065020
(2003
).7.
Corrigan
, E.
, and Fairlie
, D. B.
, “Scalar field theory and exact solutions to a classical su(2)-gauge theory
,” Phys. Lett.
67B
, 69
–71
(1977
).8.
Corrigan
, E.
, and Goddard
, P.
, “Construction of instanton and monopole solutions and reciprocity
,” Ann. Phys.
154
, 253
–279
(1984
).9.
Etesi
, G.
and Jardim
, M.
, “Moduli spaces of self-dual connections over asymptotically locally flat gravitational instantons
,” Commun. Math. Phys.
(submitted).10.
Garland
, H.
and Murray
, M. K.
, “Kac-moody monopoles and periodic instantons
,” Commun. Math. Phys.
120
, 335
–351
(1988
).11.
Gross
, D. J.
, Pisarski
, R. D.
, and Yaffe
, L. G.
, Rev. Mod. Phys.
53
, 43
–80
(1978
).12.
Harrington
, B. J.
and Shepard
, H. K.
, “Periodic euclidean solutions and the finite-temperature yang-mills gas
,” Phys. Rev. D
17
, 2122
–2125
(1978
).13.
Hartshorne
, R.
, “Stable vector bundles and instantons
,” Commun. Math. Phys.
59
, 1
–15
(1978
).14.
Hurturbise
, J.
and Murray
, M. K.
, “On the construction of monopoles for the classical groups
,” Commun. Math. Phys.
122
, 35
–89
(1989
).15.
Jackiw
, R.
, Nohl
, C.
, and Rebbi
, C.
, “Conformal properties of pseudoparticle configurations
,” Phys. Rev. D
15
, 1642
–1646
(1977
).16.
Kraan
, T. C.
, and van Baal
, P.
, “Periodic instantons with nontrivial holonomy
,” Nucl. Phys. B
533
, 627
–659
(1998
).17.
Lee
, K.
and Lu
, C.
“Su(2) calorons and magnetic monopoles
,” Phys. Rev. D
58
, 025011
(1998
).18.
Lee
, K.
and Yi
, P.
, “Monopoles and instantons on partially compactified d-branes
,” Phys. Rev. D
56
, 3711
–3717
(1997
).19.
Nógrádi
, D.
, Ph.D. thesis, University of Leiden
(2005
).20.
Nye
, T. M. W.
, Ph.D. thesis, University of Edinburgh
(2001
).21.
Rossi
, P.
, “Propagation function in the field of a monopole
,” Nucl. Phys. B
149
, 170
–188
(1979
).22.
Ward
, R. S.
, “Symmetric calorons
, Phys. Lett. B
582
, 203
–210
(2004
).23.
Witten
, E.
, “Some exact multipseudoparticle solutions of classical yang-mills theory
,” Phys. Rev. Lett.
38
, 121
–124
(1977
).© 2007 American Institute of Physics.
2007
American Institute of Physics
You do not currently have access to this content.