We construct SU(2) calorons, with nontrivial holonomy, instanton charge 2 and magnetic charge 0 or 1; these calorons have two constituent monopoles, with charges (2,2) or (2,1). Our calorons are U(1) symmetric and are constructed via the Nahm transform. They fall into distinct families which can be classified using representation theory. We consider large scale and large period limits of these calorons; in particular, the large scale limit may be a monopole, or a caloron with different topological charges.

1.
Atiyah
,
M. F.
and
Manton
,
N. S.
, “
Geometry and kinematics of 2 skyrmions
,”
Commun. Math. Phys.
153
,
391
422
(
1993
).
2.
Bruckman
,
F.
and
van Baal
,
P.
, “
Multi-caloron solutions
,”
Nucl. Phys. B
645
,
105
133
(
2002
).
3.
Bruckman
,
F.
,
Nógrádi
,
D.
, and
van Baal
,
P.
, “
Constituent monopoles through the eyes of fermion zero-modes
,”
Nucl. Phys. B
666
,
197
229
(
2003
).
4.
Bruckman
,
F.
,
Nógrádi
,
D.
, and
van Baal
,
P.
, “
Multi-caloron solutions
,”
Nucl. Phys. B
698
,
233
254
(
2004
).
5.
Chakrabarti
,
A.
, “
Periodic generalizations of static, self-dual su(2) gauge fields
,”
Phys. Rev. D
35
,
696
706
(
1987
).
6.
Chen
,
X.
and
Weinberg
,
J. E.
Atiyah-Drinfeld-Hitchin-Manin-Nahm boundary conditions from removing monopoles
,”
Phys. Rev. D
67
,
065020
(
2003
).
7.
Corrigan
,
E.
, and
Fairlie
,
D. B.
, “
Scalar field theory and exact solutions to a classical su(2)-gauge theory
,”
Phys. Lett.
67B
,
69
71
(
1977
).
8.
Corrigan
,
E.
, and
Goddard
,
P.
, “
Construction of instanton and monopole solutions and reciprocity
,”
Ann. Phys.
154
,
253
279
(
1984
).
9.
Etesi
,
G.
and
Jardim
,
M.
, “
Moduli spaces of self-dual connections over asymptotically locally flat gravitational instantons
,”
Commun. Math. Phys.
(submitted).
10.
Garland
,
H.
and
Murray
,
M. K.
, “
Kac-moody monopoles and periodic instantons
,”
Commun. Math. Phys.
120
,
335
351
(
1988
).
11.
Gross
,
D. J.
,
Pisarski
,
R. D.
, and
Yaffe
,
L. G.
,
Rev. Mod. Phys.
53
,
43
80
(
1978
).
12.
Harrington
,
B. J.
and
Shepard
,
H. K.
, “
Periodic euclidean solutions and the finite-temperature yang-mills gas
,”
Phys. Rev. D
17
,
2122
2125
(
1978
).
13.
Hartshorne
,
R.
, “
Stable vector bundles and instantons
,”
Commun. Math. Phys.
59
,
1
15
(
1978
).
14.
Hurturbise
,
J.
and
Murray
,
M. K.
, “
On the construction of monopoles for the classical groups
,”
Commun. Math. Phys.
122
,
35
89
(
1989
).
15.
Jackiw
,
R.
,
Nohl
,
C.
, and
Rebbi
,
C.
, “
Conformal properties of pseudoparticle configurations
,”
Phys. Rev. D
15
,
1642
1646
(
1977
).
16.
Kraan
,
T. C.
, and
van Baal
,
P.
, “
Periodic instantons with nontrivial holonomy
,”
Nucl. Phys. B
533
,
627
659
(
1998
).
17.
Lee
,
K.
and
Lu
,
C.
Su(2) calorons and magnetic monopoles
,”
Phys. Rev. D
58
,
025011
(
1998
).
18.
Lee
,
K.
and
Yi
,
P.
, “
Monopoles and instantons on partially compactified d-branes
,”
Phys. Rev. D
56
,
3711
3717
(
1997
).
19.
Nógrádi
,
D.
, Ph.D. thesis,
University of Leiden
(
2005
).
20.
Nye
,
T. M. W.
, Ph.D. thesis,
University of Edinburgh
(
2001
).
21.
Rossi
,
P.
, “
Propagation function in the field of a monopole
,”
Nucl. Phys. B
149
,
170
188
(
1979
).
22.
Ward
,
R. S.
, “
Symmetric calorons
,
Phys. Lett. B
582
,
203
210
(
2004
).
23.
Witten
,
E.
, “
Some exact multipseudoparticle solutions of classical yang-mills theory
,”
Phys. Rev. Lett.
38
,
121
124
(
1977
).
You do not currently have access to this content.