This paper is concerned with the study of the Cauchy problem associated with an n-dimensional generalized Benney-Luke equation, uttmΔuΔutt+Δ2u+α(2uut+utΔu)+β(upu)=0, where n=1,2,3,4. We prove the existence and the uniqueness of the global solution of the Cauchy problem for the β0 case by using energy conservation law and give the existence and the nonexistence of the global solution of the Cauchy problem for the β>0 case by constructing the stable set and the unstable set.

1.
Benney
,
D. J.
and
Luke
,
J. C.
, “
On the interactions of permanent waves of finite amplitude
,”
J. Math. Phys.
43
,
309
313
(
1964
).
2.
Boussinesq
,
J. V.
, “
Théorie de l’intumescence liquide appelée onde solitaire ou de translation, se propageant dans un canal rectangulaire
,”
Acad. Sci., Paris, C. R.
72
,
755
759
(
1871
).
3.
Boussinesq
,
J. V.
, “
Théorie des ondes et des remous qui se propagés dans un canal rectangulaire horizontal, en communiquant au liquide contenu dans ce canal des vitesses sensiblement pareilles de la surface au fond
,”
J. Math. Pures Appl.
17
,
55
108
(
1872
).
4.
Boussinesq
,
J. V.
, “
Théorie générale des mouvements qui sont propagés dans un canal rectangulaire horizontal
,”
C. R. Hebd. Seances Acad. Sci.
73
,
256
260
(
1871
).
5.
Christov
,
C. I.
, “
An energy-consistent dispersive shallow-water-water model
,”
Wave Motion
34
,
161
174
(
2001
).
6.
Jaunzemis
,
W.
,
Continuum Mechanics
(
Macmillan
,
New York
,
1967
).
7.
Kano
,
T.
and
Nishida
,
T.
, “
A mathematical justification for Korteweg-de Vries equation and Boussinesq equation of water surface waves
,”
Osaka J. Math.
23
,
389
413
(
1986
).
8.
Leviene
,
H. A.
, “
Some additional remarks on the nonexistence of global solutions to nonlinear wave equation
,”
SIAM J. Math. Anal.
5
,
138
146
(
1974
).
9.
Liu
,
Y.
, “
Existence and blowup of solutions of a nonlinear Pchhammer-Chree equation
,”
Indiana Univ. Math. J.
45
,
797
816
(
1996
).
10.
Liu
,
Y.
, “
Instability and blow-up of solutions to a generalized Boussinesq equation
,”
SIAM J. Math. Anal.
26
,
1527
1546
(
1995
).
11.
Love
,
A. E. H.
,
Mathematical theorey of elasticity
, 4th ed. (
Cambridge University Press
,
Cambridge
,
1927
), p.
428
.
12.
Mariş
,
M.
, “
Analyticity and decay properties of the solitary waves to the Benney-Luke equation
,”
Diff. Integral Eq.
14
,
361
384
(
2001
).
13.
Milewski
,
P. A.
and
Keller
,
J. B.
, “
Three dimensional water waves
,”
Stud. Appl. Math.
37
,
149
166
(
1996
).
14.
Paumond
,
L.
, “
A rigorous link between KP and a Benney-Luke equation
,”
Diff. Integral Eq.
16
,
1039
1064
(
2003
).
15.
Pego
,
R. L.
and
Quintero
,
J. R.
, “
A host of traveling waves in a model of three-dimensional water-wave dynamics
,”
J. Nonlinear Sci.
12
,
59
83
(
2002
).
16.
Pego
,
R. L.
and
Quintero
,
J. R.
, “
Two dimensional solitary waves for a Benney-Luke equation
,”
Physica D
132
,
476
496
(
1999
).
17.
Quintero
,
J. R.
, “
Existence and analyticity of lump solution for generalized Benney-Luke equations
,”
Revista Colombiana de Matemáticas
36
,
71
95
(
2002
).
18.
Quintero
,
J. R.
, “
Nonlinear Stability for a 2-D Benney-Luke equation
,”
Discrete Contin. Dyn. Syst.
13
,
203
218
(
2005
).
19.
Quintero
,
J. R.
, “
Nonlinear stability of a one-dimensional Boussinesq equation
,”
J. Dyn. Differ. Equ.
15
,
125
142
(
2003
).
20.
Samonov
,
A. M.
, in
Nonlinear Waves in Solids
, edited by
Jeffrey
,
A.
and
Engelbrecht
,
J.
(
Springer
,
New York
,
1994
).
21.
Soerensen
,
M. P.
,
Christiansen
,
P. L.
, and
Lohmdahl
,
P. S.
, “
Solitary waves on nonlinear elastic rods I
,”
J. Acoust. Soc. Am.
76
,
871
879
(
1984
).
22.
Tao
,
T.
, “
Multilinear weighted convolution of L2 functions and application to nonlinear dispersive equations
,”
Am. J. Math.
122
,
839
908
(
2001
).
23.
Toda
,
M.
,
Theory of Nonlinear Lattice
, 2nd ed., (
Springer
,
New York
,
1989
).
24.
Toda
,
M.
, “
Wave propagation in anharmonic lattices
,”
J. Phys. Soc. Jpn.
23
,
501
506
(
1967
).
25.
Toda
,
M.
and
Wadati
,
M.
, “
A soliton and two solitton solutions in an exponential lattice and related equations
,”
J. Phys. Soc. Jpn.
34
,
18
25
(
1973
).
26.
Wang
,
S.
and
Chen
,
G.
, “
Cauchy problem of the generalized double dispersion equation
,”
Nonlinear Anal. Theory, Methods Appl.
64
,
159
173
(
2006
).
27.
Wang
,
S.
and
Chen
,
G.
, “
Small amplitude solutions of the generalized IMBq equation
,”
J. Math. Anal. Appl.
274
,
846
866
(
2002
).
28.
Wang
,
S.
and
Chen
,
G.
, “
The Cauchy problem for the generalized IMBq equation in Ws,p(Rn)
,”
J. Math. Anal. Appl.
266
,
38
54
(
2002
).
29.
Whitham
,
G. B.
,
Linear and Nonlinear Waves
(
Wiley
,
New York
,
1974
).
You do not currently have access to this content.