This paper is concerned with the study of the Cauchy problem associated with an -dimensional generalized Benney-Luke equation, , where . We prove the existence and the uniqueness of the global solution of the Cauchy problem for the case by using energy conservation law and give the existence and the nonexistence of the global solution of the Cauchy problem for the case by constructing the stable set and the unstable set.
REFERENCES
1.
Benney
, D. J.
and Luke
, J. C.
, “On the interactions of permanent waves of finite amplitude
,” J. Math. Phys.
43
, 309
–313
(1964
).2.
Boussinesq
, J. V.
, “Théorie de l’intumescence liquide appelée onde solitaire ou de translation, se propageant dans un canal rectangulaire
,” Acad. Sci., Paris, C. R.
72
, 755
–759
(1871
).3.
Boussinesq
, J. V.
, “Théorie des ondes et des remous qui se propagés dans un canal rectangulaire horizontal, en communiquant au liquide contenu dans ce canal des vitesses sensiblement pareilles de la surface au fond
,” J. Math. Pures Appl.
17
, 55
–108
(1872
).4.
Boussinesq
, J. V.
, “Théorie générale des mouvements qui sont propagés dans un canal rectangulaire horizontal
,” C. R. Hebd. Seances Acad. Sci.
73
, 256
–260
(1871
).5.
Christov
, C. I.
, “An energy-consistent dispersive shallow-water-water model
,” Wave Motion
34
, 161
–174
(2001
).6.
7.
Kano
, T.
and Nishida
, T.
, “A mathematical justification for Korteweg-de Vries equation and Boussinesq equation of water surface waves
,” Osaka J. Math.
23
, 389
–413
(1986
).8.
Leviene
, H. A.
, “Some additional remarks on the nonexistence of global solutions to nonlinear wave equation
,” SIAM J. Math. Anal.
5
, 138
–146
(1974
).9.
Liu
, Y.
, “Existence and blowup of solutions of a nonlinear Pchhammer-Chree equation
,” Indiana Univ. Math. J.
45
, 797
–816
(1996
).10.
Liu
, Y.
, “Instability and blow-up of solutions to a generalized Boussinesq equation
,” SIAM J. Math. Anal.
26
, 1527
–1546
(1995
).11.
Love
, A. E. H.
, Mathematical theorey of elasticity
, 4th ed. (Cambridge University Press
, Cambridge
, 1927
), p. 428
.12.
Mariş
, M.
, “Analyticity and decay properties of the solitary waves to the Benney-Luke equation
,” Diff. Integral Eq.
14
, 361
–384
(2001
).13.
Milewski
, P. A.
and Keller
, J. B.
, “Three dimensional water waves
,” Stud. Appl. Math.
37
, 149
–166
(1996
).14.
Paumond
, L.
, “A rigorous link between KP and a Benney-Luke equation
,” Diff. Integral Eq.
16
, 1039
–1064
(2003
).15.
Pego
, R. L.
and Quintero
, J. R.
, “A host of traveling waves in a model of three-dimensional water-wave dynamics
,” J. Nonlinear Sci.
12
, 59
–83
(2002
).16.
Pego
, R. L.
and Quintero
, J. R.
, “Two dimensional solitary waves for a Benney-Luke equation
,” Physica D
132
, 476
–496
(1999
).17.
Quintero
, J. R.
, “Existence and analyticity of lump solution for generalized Benney-Luke equations
,” Revista Colombiana de Matemáticas
36
, 71
–95
(2002
).18.
Quintero
, J. R.
, “Nonlinear Stability for a 2-D Benney-Luke equation
,” Discrete Contin. Dyn. Syst.
13
, 203
–218
(2005
).19.
Quintero
, J. R.
, “Nonlinear stability of a one-dimensional Boussinesq equation
,” J. Dyn. Differ. Equ.
15
, 125
–142
(2003
).20.
Samonov
, A. M.
, in Nonlinear Waves in Solids
, edited by Jeffrey
, A.
and Engelbrecht
, J.
(Springer
, New York
, 1994
).21.
Soerensen
, M. P.
, Christiansen
, P. L.
, and Lohmdahl
, P. S.
, “Solitary waves on nonlinear elastic rods I
,” J. Acoust. Soc. Am.
76
, 871
–879
(1984
).22.
Tao
, T.
, “Multilinear weighted convolution of functions and application to nonlinear dispersive equations
,” Am. J. Math.
122
, 839
–908
(2001
).23.
Toda
, M.
, Theory of Nonlinear Lattice
, 2nd ed., (Springer
, New York
, 1989
).24.
Toda
, M.
, “Wave propagation in anharmonic lattices
,” J. Phys. Soc. Jpn.
23
, 501
–506
(1967
).25.
Toda
, M.
and Wadati
, M.
, “A soliton and two solitton solutions in an exponential lattice and related equations
,” J. Phys. Soc. Jpn.
34
, 18
–25
(1973
).26.
Wang
, S.
and Chen
, G.
, “Cauchy problem of the generalized double dispersion equation
,” Nonlinear Anal. Theory, Methods Appl.
64
, 159
–173
(2006
).27.
Wang
, S.
and Chen
, G.
, “Small amplitude solutions of the generalized IMBq equation
,” J. Math. Anal. Appl.
274
, 846
–866
(2002
).28.
Wang
, S.
and Chen
, G.
, “The Cauchy problem for the generalized IMBq equation in
,” J. Math. Anal. Appl.
266
, 38
–54
(2002
).29.
© 2007 American Institute of Physics.
2007
American Institute of Physics
You do not currently have access to this content.