This paper presents the solution to the following optimization problem: What is the shape of the two-dimensional region that minimizes the average Lp distance between all pairs of points if the area of this region is held fixed? Variational techniques are used to show that the boundary curve of the optimal region satisfies a nonlinear integral equation. The special case p=2 is elementary and for this case the integral equation reduces to a differential equation whose solution is a circle. Two nontrivial special cases, p=1 and p=, have already been examined in the literature. For these two cases the integral equation reduces to nonlinear second-order differential equations, one of which contains a quadratic nonlinearity and the other a cubic nonlinearity.

1.
S. O.
Krumke
,
M. V.
Marathe
,
H.
Noltemeier
,
V.
Radhakrishnan
,
S. S.
Ravi
, and
D. J.
Rosenkrantz
,
Theor. Comput. Sci.
181
,
379
(
1997
).
2.
J.
Mache
,
V.
Lo
, and
K.
Windisch
,
Proceedings of the Tenth International Conference on Parallel and Distributed Computing Systems
,
1997
, pp.
120
124
.
3.
J.
Mache
and
V.
Lo
,
Proceedings of the Third Joint Conference on Information Sciences, Sessions on Parallel and Distributed Processing
,
1997
, Vol.
3
, pp.
223
226
.
4.
V. J.
Leung
,
E. M.
Arkin
,
M. A.
Bender
,
D. P.
Bunde
,
J.
Johnston
,
A.
Lal
,
J. S. B.
Mitchell
,
C. A.
Phillips
, and
S. S.
Seiden
,
Proceedings of the Fourth IEEE International Conference on Cluster Computing
,
2002
, pp.
296
304
.
5.
M. A.
Bender
,
D. P.
Bunde
,
E. D.
Demaine
,
S. P.
Fekete
,
V. J.
Leung
,
H.
Meijer
, and
C. A.
Phillips
,
Proceedings of the Ninth International Workshop on Algorithms and Data Structures (WADS)
,
2005
, pp.
169
181
.
6.
A.
Ahmadinia
,
C.
Bobda
,
S.
Fekete
,
J.
Teich
, and
J.
van der Veen
,
Proceedings of International Conference on Field-Programmable Logic and Applications (FPL)
,
2004
, LNCS 3203, pp.
847
851
.
7.
R. M.
Karp
,
A. C.
McKellar
, and
C. K.
Wong
,
SIAM J. Comput.
4
,
271
(
1975
).
8.
Approximation Algorithms for NP-hard Problems
, edited by
D. S.
Hochbaum
(
PWS
,
Boston, MA
,
1997
).
9.
C. M.
Bender
,
M. A.
Bender
,
E.
Demaine
, and
S.
Fekete
,
J. Phys. A: Math. Gen.
37
,
147
(
2004
).
10.
J. E.
Marsden
and
T. S.
Ratiu
,
Introduction to Mechanics and Symmetry
(
Springer
,
New York
,
1999
).
11.
A.
Mercier
,
Variational Principles of Physics
(
Dover
,
New York
,
1963
).
You do not currently have access to this content.