The octonionic geometry (gravity) developed long ago by Oliveira and Marques, J. Math. Phys.26, 3131 (1985) is extended to noncommutative and nonassociative space time coordinates associated with octonionic-valued coordinates and momenta. The octonionic metric Gμν already encompasses the ordinary space time metric gμν, in addition to the Maxwell U(1) and SU(2) Yang-Mills fields such that it implements the Kaluza-Klein Grand unification program without introducing extra space time dimensions. The color group SU(3) is a subgroup of the exceptional G2 group which is the automorphism group of the octonion algebra. It is shown that the flux of the SU(2) Yang-Mills field strength Fμν through the area-momentum Σμν in the internal isospin space yields corrections O(1MPlanck2) to the energy-momentum dispersion relations without violating Lorentz invariance as it occurs with Hopf algebraic deformations of the Poincare algebra. The known octonionic realizations of the Clifford Cl(8), Cl(4) algebras should permit the construction of octonionic string actions that should have a correspondence with ordinary string actions for strings moving in a curved Clifford-space target background associated with a Cl(3, 1) algebra.

1.
Jordan
,
P.
,
von Neumann
,
J.
, and
Wigner
,
E.
,
Ann. Math.
35
,
2964
(
1934
);
MacCrimmon
,
K.
,
A Taste of Jordan Algebras
(
Springer Verlag
,
New York
,
2003
);
Freudenthal
,
H.
,
Proc. K. Ned. Akad. Wet., Ser. A: Math. Sci.
57
,
218
(
1954
);
Tits
,
J.
,
Prog. Struct. Eng. Mater.
65
,
530
(
1962
);
Springer
,
T.
,
Prog. Struct. Eng. Mater.
65
,
259
(
1962
).
2.
Adams
,
J.
, “
Lectures on Exceptional Lie Groups
,”
Chicago Lectures in Mathematics
(
University of Chicago Press
,
Chicago
,
1996
).
3.
Schafer
,
R.
,
An introduction to Nonassociative Algebras
(
Academic
,
New York
,
1966
).
4.
Tze
,
C. H.
and
Gursey
,
F.
,
On the role of Divison, Jordan and Related Algebras in Particle Physics
(
World Scientific
,
Singapore
,
1996
);
Okubo
,
S.
,
Introduction to Octonion and other Nonassociative Algebras in Physics
(
Cambridge University Press
,
Cambridge
,
2005
).
5.
Kerner
,
R.
, “
Ternary Algebraic Structures and Their Applications in Physics
,”
Proceedings of the Conference ICGTMP “Group-23”
, Dubna, Russia, July 30-August 6, 2000; e-print arXiv:math-ph/0401018;
Commun. Math. Phys.
91
,
207
(
1983
);
6.
Dubois-Violette
,
M.
,
Kerner
,
R.
, and
Madore
,
J.
,
J. Math. Phys.
31
,
316
(
1990
);
Dubois-Violette
,
M.
,
Kerner
,
R.
, and
Madore
,
J.
,
J. Math. Phys.
31
,
323
(
1990
);
Dubois-Violette
M.
, and
Henneaux
,
M.
,
Lett. Math. Phys.
49
,
245
(
1999
);
Dubois-Violette
,
M.
and
Henneaux
,
M.
,
Commun. Math. Phys.
226
,
393
(
2002
).
7.
Bazunova
,
N.
,
Borowiec
,
A.
, and
Kerner
,
R.
, “
Universal Differential Calculus on Ternary Algebras
,”
Lett. Math. Phys.
67
,
195
206
(
2004
); e-print arXiv:math-ph/0011023.
8.
Springer
,
T.
and
Veldkamp
,
F.
,
Octonions, Jordan Algebras and Exceptional Groups
(
Springer Verlag
,
New York
,
2000
).
9.
Dixon
,
G.
,
Division Algebras, Octonions, Quaternions, Complex Numbers, and the Algebraic Design of Physics
(
Kluwer
,
Dordrecht
,
1994
);
Division algebras: Family replication
,”
J. Math. Phys.
45
,
3878
(
2004
).
10.
Einstein
,
A.
,
Ann. Math.
46
,
578
(
1945
);
Einstein
,
A.
,
Rev. Mod. Phys.
20
,
35
(
1948
);
Einstein
,
A.
and
Strauss
,
E.
,
Ann. Math.
47
,
731
(
1946
).
11.
Ohwashi
,
Y.
, e-print arXiv:hep-th∕0110106;
12.
Castro
,
C.
, “
The large N limit of Exceptional Jordan Matrix Models and M, F Theory
,”
J. Geom. Phys.
57
,
1941
(
2007
).
13.
Rios
,
M.
, e-print arXiv:hep-th∕0703238;
14.
Smolin
,
L.
, e-print arXiv:hep-th∕0104050.
15.
Gunaydin
,
M.
, “
Octonionc Hllbert Spaces, the Poincare Group and SU(3)
,”
J. Math. Phys.
17
(
10
),
1875
(
1976
).
16.
Catto
,
S.
, “
Exceptional Projective Geometries and Internal Symmetries
,” e-print arXiv:hep-th∕0212251.
17.
Smith
,Jr.,
F. D.
, “
E6, Strings, Branes and the Standard Model
,”
Int. J. Theor. Phys.
24
,
155
(
1985
);
Smith
,Jr.,
F. D.
,
Int. J. Theor. Phys.
25
,
355
(
1985
);
18.
Borchsenius
,
K.
,
Phys. Rev. D
13
,
2707
(
1976
).
19.
Moffat
,
J.
and
Boal
,
D.
,
Phys. Rev. D
11
,
1375
(
1975
).
20.
Marques
,
S.
and
Oliveira
,
C.
,
J. Math. Phys.
26
,
3131
(
1985
);
Marques
,
S.
and
Oliveira
,
C.
,
Phys. Rev. D
36
,
1716
(
1987
).
21.
Castro
,
C.
and
Pavsic
,
M.
,
Prog. Phys.
1
,
31
(
2005
);
Castro
,
C.
and
Pavsic
,
M.
,
Phys. Lett. B
559
,
74
(
2003
);
Castro
,
C.
and
Pavsic
,
M.
,
Int. J. Theor. Phys.
42
,
1693
(
2003
).
22.
Pavsic
,
M.
, “
Spin gauge theory of gravity in Clifford space: A realization of Kaluza Klein theory in 4-dim spacetime
,”
Int. J. Mod. Phys. A
21
,
5905
5956
(
2006
);
Pavsic
,
M.
, “
Kaluza-Klein theory without extra dimensions: Curved Clifford space
,”
Phys. Lett. B
614
,
85
95
(
2005
);
Found. Phys.
(to be published).
23.
Trayling
,
G.
, e-print arXiv:hep-th∕9912231.
24.
Porteous
,
I. R.
Clifford algebras and Classical Groups
(
Cambridge University Press
,
Cambridge
,
1995
).
25.
Cederwall
,
M.
and
Palmkvist
,
J.
, “
A Geometric Approach to the Standard Model
,” e-print arXiv:hep-th∕0702024.
26.
Adler
,
S.
, e-print arXiv:hep-ph∕0401212;
Bars
,
I.
and
Gunaydin
,
M.
,
Phys. Rev. Lett.
45
,
859
(
1980
);
Konshtein
S.
, and
Fradkin
,
E.
,
Pis'ma Zh. Eksp. Teor. Fiz.
42
,
575
(
1980
);
27.
Gunaydin
,
M.
,
Koepsell
,
K.
and
Nicolai
,
H.
, “
The Minimal Unitary Representation ofE8(8)
,”
Adv. Theor. Math. Phys.
5
,
923
946
(
2002
); e-print arXiv:hep-th∕0109005;
Gunaydin
,
M.
, “
Unitary Realizations of U-duality Groups as Conformal and Quasi Conformal Groups and Extremal Black Holes of Supergravity Theories
,” e-print arXiv:hep-th∕0502235;
Gunaydin
,
M.
and
Pavlyk
,
O.
, “
Generalized spacetimes defined by cubic forms and the minimal unitary realizations of their quasi-conformal groups
,”
J. High Energy Phys.
0508
,
101
(
2005
); e-print arXiv:hep-th∕0506010;
Gunaydin
,
M.
,
Koepsell
,
K.
, and
Nicolai
,
H.
,
Commun. Math. Phys.
221
,
57
(
2001
);
Gunaydin
,
M.
,
Koepsell
,
K.
, and
Nicolai
,
H.
,
Adv. Theor. Math. Phys.
5
,
923
(
2002
);
Gunaydin
,
M.
,
Nietzke
,
A.
,
Pioline
,
B.
, and
Waldron
,
A.
, e-print arXiv:hep-th∕0512296.
28.
Toppan
,
F.
, “
Hermitian versus Holomorphic complex and quaternionic generalized supersymmetries of M theory, a classification
,”
Phys. Rev. D
73
,
084019
(
2006
);
Kuznetsova
,
Z.
and
Toppan
,
F.
, Exceptional Groups and Physics, Plenary Talk delivered at Groupe 24 Conference, Paris, July 2002, e-print arXiv:hep-th∕0610122.
29.
Ramond
,
P.
, e-print arXiv:hep-th∕0301050.
30.
Hull
,
C.
, e-print arXiv:hep-th∕0701203.
31.
Kapustin
,
A.
and
Witten
,
E.
, e-print arXiv:hep-th∕060415.
32.
Duff
,
M.
, and
Ferrara
,
S.
, e-print arXiv:quant-ph∕0609227.
33.
Levay
,
P.
, “
Strings, black holes, the tripartite entanglement of seven quibits and the Fano plane
”,
Phys. Rev. D
75
,
024024
(
2007
); e-print arXiv:hep-th∕0610314.
34.
Gunaydin
,
M.
,
Nietzke
,
A.
,
Pioline
,
B.
, and
Waldron
,
A.
, “
BPS black holes Quantum Attractor Flows and Automorphic Forms
,”
Phys. Rev. D
73
,
084019
(
2006
); e-print arXiv:hep-th∕0512296.
35.
Foot
,
R.
and
Joshi
,
G.
,
Phys. Rev. D
36
,
1169
(
1987
).
36.
Baez
,
J.
, “
The Octonions
,”
Bull. Am. Math. Soc.
39
,
145
205
(
2002
); e-print arXiv:math.RA∕0105155.
37.
Dangwal
,
S.
,
Bisht
,
P.
, and
Negi
,
O.
, e-print arXiv:hep-th∕0608061.
38.
Lassig
,
C.
and
Joshi
,
G.
, “
An Octonionic Gauge Theory
,”
Chaos, Solitons Fractals
7
,
769
(
1996
); e-print arXiv:hep-th∕9503189;
Ritz
,
A.
and
Joshi
,
G.
, “
A Nonassociative Deformation of Yang-Mills Gauge Theory
,”
Chaos, Solitons Fractals
8
,
835
(
1997
); e-print arXiv:hep-th∕9508147.
39.
Ootsuka
,
T.
,
Tanaka
,
E.
, and
Loginov
,
E.
, e-print arXiv:hep-th∕0512349;
Loginov
,
E.
, “
Analytic Loops and Gauge Fields
,”
Nucl. Phys. B
606
,
636
(
2001
);
Loginov
,
E.
, “
Multi-instantons in higher dimensions and superstring solitons
,”
Symmetry, Integrability and Geometry: Methods and Applications
1
,
2
(
2005
);
40.
Nieto
,
J. A.
, e-print arXiv:hep-th∕0704.2769;
41.
Gogberashvili
,
M.
, “
Octonionic Geometry
,”
Adv. Appl. Clifford Algebras
15
,
55
(
2005
); e-print arXiv:hep-th∕0505101.
42.
Held
,
R.
,
Stavrov
,
I.
, and
Vankoten
,
B.
, e-print arXiv:math.DG∕07–2631.
43.
Manivel
,
L.
, e-print arXiv:math.RT∕0507118.
44.
Friedman
,
R.
and
Morgan
,
J.
, e-print arXiv:math.AG∕0009155.
45.
De Leo
,
S.
, “
Hypercomplex Group Theory
,” e-print arXiv:physics∕9703033;
De Leo
,
S.
and
Abdel-Khalek
,
K.
, “
Octonionic Representations of GL (8,R) and SL (4,C)
,”
J. Math. Phys.
38
,
582
(
1997
); e-print arXiv:hep-th∕9607140;
De Leo
,
S.
and
Abdel-Khalek
,
K.
, “
Octonionic Representations of GL (8,R) and SL (4,C)
,”
Prog. Theor. Phys.
96
,
823
(
1996
); e-print arXiv:hep-th∕9609032.
46.
Manogue
,
C.
and
Dray
,
T.
, “
Octonionic Mobius Transformations
,”
Mod. Phys. Lett. A
14
,
1243
(
1999
).
47.
Castro
,
C.
,
Int. J. Geom. Methods Mod. Phys.
(submitted).
48.
Castro
,
C.
, “
On Chern-Simons (super) gravity, E8 Yang-Mills and polyvector valued gauge theories in Clifford spaces
,”
J. Math. Phys.
47
,
112301
(
2006
).
49.
Castro
,
C.
, “
On generalized Yang-Mills theories and extensions of the standard model in Clifford (tensorial) spaces
,”
Ann. Phys. (N.Y.)
321
,
813
839
(
2006
);
Castro
,
C.
, “
Generalized p-forms electrodynamics in Clifford spaces
,”
Mod. Phys. Lett. A
19
,
19
27
(
2004
).
50.
Castro
,
C.
, “
On modified Weyl-Heisenberg algebras, noncommutativity, matrix-valued Planck constant and QM in Clifford spaces
,”
J. Phys. A
39
,
14205
14229
(
2006
).
51.
Castro
,
C.
, “
Polyvector super Poincare algebras, M, F theory algebras and generalized supersymmetry in Clifford spaces
,”
Int. J. Mod. Phys. A
21
,
2149
(
2005
).
52.
Castro
,
C.
, “
The extended relativity theory in Born-Clifford phase spaces with a lower and upper length scale and Clifford group geometric unification
,”
Found. Phys.
35
,
971
(
2005
);
53.
Castro
,
C.
, “
On area coordinates and QM in Yang’s noncommutative spacetime with a lower and upper scale
,”
Prog. Phys.
2
,
86
92
(
2006
).
54.
Wess
,
J.
, “
Einstein-Riemann Gravity on Deformed Spaces
,”
Symmetry, Integrability and Geometry: Methods and Applications
2
,
089
(
2006
); e-print arXiv:hep-th∕0611025;
Aschieri
,
P. J.
,
,
Dimitrijevic
,
M.
,
Meyer
,
F.
, and
Wess
,
J.
, “
Noncommutative geometry and gravity
,”
Class. Quantum Grav.
23
,
1883
(
2006
).
55.
Amelino-Camelia
,
G.
,
Int. J. Mod. Phys. D
11
,
35
(
2002
);
Amelino-Camelia
,
G.
,
Int. J. Mod. Phys. D
11
,
1643
(
2002
);
Amelino-Camelia
,
G.
,
Phys. Lett. B
510
,
255
(
2001
);
Lukierski
,
J.
,
Nowicki
,
A.
,
Ruegg
,
H.
, and
Tolstoy
,
V.
,
Phys. Lett. B
264
,
331
(
1991
);
Lukierski
,
J.
,
Ruegg
,
H.
, and
Zakrzewski
,
W.
,
Ann. Phys. (N.Y.)
243
,
90
(
1995
).
56.
Boya
,
L.
,
Mod. Phys. Lett. A
21
,
287
304
(
2006
).
57.
de Buyl
,
S.
,
Henneaux
,
M.
, and
Paulot
,
L.
, “
ExtendedE8 of 11-dim Supergravity
,”
J. High Energy Phys.
0602
,
056
(
2006
); e-print arXiv:hep-th∕0512292;
West
,
P.
,
Class. Quantum Grav.
18
,
4443
(
2001
);
Belinsky
,
V. A.
,
Khalatnikov
,
I. M.
, and
Lifshitz
,
E. M.
,
Adv. Phys.
19
,
525
(
1970
).
58.
Cremmer
,
E.
,
Julia
,
B.
, and
Scherk
,
J.
,
Phys. Lett. B
76
,
409
(
1978
).
59.
Damour
,
T.
,
Kleinschmidt
,
A.
, and
Nicolai
,
H.
, “
Hidden Symmetries and the Fermionic Sector of 11-dim Supergravity
,”
Phys. Lett. B
634
,
319
(
2006
); e-print arXiv:hep-th∕0512163;
Koepsell
,
K.
,
Nicolai
,
H.
, and
Samtleben
,
H.
, “
An Exceptional Geometry forD=11 Supergravity?
,”
Class. Quantum Grav.
17
,
3689
(
2000
); e-print arXiv:hep-th∕0006034;
Nicolai
,
H.
and
Samtleben
,
H.
, “
Maximal Gauged Maximal Supergravities in Three Dimensions
,”
Phys. Rev. Lett.
86
,
1686
(
2001
).
[PubMed]
60.
Zanelli
,
J.
, “
Gauge Supergravities for all Odd Dimensions
,”
Int. J. Theor. Phys.
38
,
1181
(
1999
); e-print arXiv:hep-th∕0502193;
Troncoso
,
R.
and
Zanelli
,
J.
, e-print arXiv:hep-th∕9807029;
Hassaine
,
M.
,
Troncoso
,
R.
, and
Zanelli
,
J.
, “
Poincare Invariant Gravity with Local Sypersymmetry as a Gauge Theory for the M Algebra
,”
Phys. Lett. B
586
,
397
(
2004
); e-print arXiv:hep-th∕0306258;
Izaurieta
,
F.
,
Rodriguez
,
F.
, and
Salgado
,
P.
, “
Euler Chern Simons Gravity from Lovelock Born Infeld Gravity
,”
Phys. Lett. B
586
,
397
(
2004
); e-print arXiv:hep-th∕0402208.
61.
Alekseevsky
,
D.
,
Cortes
,
V.
,
Devchand
,
C.
, and
Van Proeyen
,
A.
, “
Polyvector Super-Poincare Algebras
,”
Commun. Math. Phys.
253
,
385
(
2004
); e-print arXiv:hep-th∕0311107;
Rudychev
,
I.
and
Sezgin
,
E.
, “
Superparticles, p-form Coordinates and the BPS Condition
,” e-print arXiv:hep-th∕9711128;
Bars
,
I.
and
Kounnas
,
C.
, “
A New Supersymmetry
,” e-print arXiv:hep-th∕9612119;
Bandos
,
I.
and
Lukierski
,
J.
, “
Generalized Superconformal Symmetries and Superwistor Dynamics
,” e-print arXiv:hep-th∕9912264.
62.
Frenkel
,
I.
and
Todorov
,
A.
, “
Complex Counterpart of Chern-Simons-Witten Theory and Holomorphic Linking
,” e-print arXiv:math.AG∕0502169;
Borowiec
,
A.
,
Ferraris
,
M.
, and
Francaviglia
,
M.
,
J. Phys. A
36
,
2589
(
2003
).
You do not currently have access to this content.