The role of unitary operators is central in mathematics, in questions related to energy conservation in physics, as well as in stable computations in numerical linear algebra and scientific simulations. In this paper a refined way to measure the deviation from unitary operators is proposed for matrices in terms of so-called unitary approximation numbers. These describe how far an operator is from being unitary, i.e., energy conserving modulo small rank perturbations.

1.
Elsner
,
L.
, and
He
,
C.
, “
Perturbation and interlace theorems for the unitary eigenvalue problem
,”
Linear Algebra Appl.
188/189
, pp.
207
229
(
1993
).
2.
Golub
,
G. H.
, and
van Loan
,
C. F.
,
Matrix Computations
, 3rd ed. (
The John Hopkins University Press
,
Baltimore
,
1996
).
3.
Helsen
,
S.
,
Kuijlaars
,
A.
, and
Van Barel
,
M.
, “
Convergence of the isometric Arnoldi process
,”
SIAM J. Matrix Anal. Appl.
26
,
782
809
(
2005
).
4.
Herrero
,
D. A.
,
Approximation of Hilbert Space Operators
,
Pitman Research Notes in Mathematics Series 224
(
Longman Scientific & Technical
,
Harlow
,
1989
), Vol.
1
.
5.
Horn
,
R. A.
, and
Johnson
,
C. R.
,
Matrix Analysis
2nd ed. (
Cambridge University Press
,
Cambridge
,
1987
).
6.
Horn
,
R. A.
, and
Johnson
,
C. R.
,
Topics in Matrix Analysis
(
Cambridge University Press
,
Cambridge
,
1991
).
7.
Huhtanen
,
M.
, “
A matrix nearness problem related to iterative methods
,”
SIAM (Soc. Ind. Appl. Math.) J. Numer. Anal.
39
,
407
422
(
2001
).
8.
Jahnke
,
T.
, and
Lubich
,
C.
, “
Error bounds for exponential operator splittings
,”
BIT
40
,
735
744
(
2000
).
9.
Lax
,
P.
,
Functional Analysis (Pure and Applied Mathematics)
(
Wiley-Interscience
,
New York
,
2002
).
10.
Olsen
,
C. L.
, “
Unitary approximation
,”
J. Funct. Anal.
85
,
392
419
(
1989
).
11.
Postnikov
,
M.
,
Lectures in Geometry, Smooth Manifolds
(
Mir
,
Moscow
,
1989
).
12.
Simon
,
B.
,
CRM Proceedings and Lecture Notes
(
American Mathematical Society
,
Providence, RI
,
1995
), Vol.
8
, pp.
109
149
.
You do not currently have access to this content.