We show that the weak formulation of the steady-state Navier-Stokes problem in the exterior of a three-dimensional compact set (closure of a bounded domain), corresponding to a nonzero velocity at infinity and subjected to a given body force, is equivalent to a nonlinear equation in appropriate Banach spaces. We thus show that the relevant nonlinear operator enjoys a number of fundamental properties that allow us to derive many significant results for the original problem. In particular, we prove that the manifold constituted by the pairs (u,λ), with λ the nondimensional speed at infinity (Reynolds number) and u weak solution corresponding to λ and to a given body force f, is, for “generic” f, a C one-dimensional manifold, and that, for almost any λ, the number of solutions is finite. We also show that, for any given f in the appropriate function space and any given λ>0, the corresponding solutions can be “controlled” by their specification only in a suitable neighborhood, I, of the boundary. The “size” of I depends only on λ and f. Furthermore, we analyze the steady bifurcation properties of branches of these solutions and prove that, in some important cases, the sufficient conditions for bifurcation formally coincide with the analogous ones for flow in a bounded domain. Finally, the stability of these solutions is analyzed. The paper ends with a section on relevant open questions.

1.
Babenko
,
K. I.
, “
On stationary solutions of the problem of flow past a body of a viscous incompressible fluid
,”
Mat. Sb.
91
,
27
(
1973
)
Babenko
,
K. I.
, [
Math. USSR. Sb.
20
,
1
25
(
1973
)].
2.
Babenko
,
K. I.
, “
Spectrum of the linearized problem of flow of a viscous incompressible liquid around a body
,”
Dokl. Akad. Nauk SSSR
262
,
64
68
(
1982
)
Babenko
,
K. I.
, [
Sov. Phys. Dokl.
27
,
25
27
(
1982
)].
3.
Batchelor
,
G. K.
,
An Introduction to Fluid Mechanics
(
Cambridge University Press
,
Cambridge
,
1981
).
4.
Berger
,
M. S.
,
Nonlinearity and Functional Analysis
,
Lectures on Nonlinear Problems in Mathematical Analysis
(
Academic
,
New York
1977
).
5.
Besov
,
O. V.
,
Il’in
,
V. P.
,
Kudrjavcev
,
L. D.
,
Lizorkin
,
P. I.
, and
Nikol’kiĭ
,
S. M.
,
Proceeding of the Symposium Dedicated to the 60th Birthday of S. L. Sobolev
[
Nauka
,
Moscow
,
1970
], pp.
38
63
.
6.
Calderon
,
C. P.
, “
Existence of weak solutions for the Navier-Stokes equations with initial data in Lp
,”
Trans. Am. Math. Soc.
318
,
179
200
(
1990
).
7.
Constantin
,
P.
,
Foiaş
,
C.
, and
Temam
,
R.
, “
attractors representing turbulent flows
,”
Mem. Am. Math. Soc.
53 (
1985
).
8.
Finn
,
R.
, “
On steady-state solutions of the Navier-Stokes partial differential equations
,”
Arch. Ration. Mech. Anal.
3
,
381
396
(
1959
).
9.
Finn
,
R.
, “
On the exterior stationary problem for the Navier-Stokes equations, and associated perturbation problems
,”
Arch. Ration. Mech. Anal.
19
,
363
406
(
1965
).
10.
Foiaş
,
C.
, and
Prodi
,
G.
, “
Sur le comportement global des solutions non-stationnaires des équations de Navier-Stokes en dimension 2
,”
Rend. Semin. Matermatico Univ. di Padova
39
,
1
34
(
1967
).
11.
Foiaş
,
C.
, and
Temam
,
R.
, “
Structure of the set of stationary solutions of the Navier-Stokes equations
,”
Commun. Pure Appl. Math.
30
,
149
164
(
1977
).
12.
Foiaş
,
C.
, and
Temam
,
R.
, “
Determination of the solutions of the Navier-Stokes equations by a set of nodal values
,”
Math. Comput.
43
,
117
133
(
1984
).
13.
Foiaş
,
C.
, and
Titi
,
E. S.
, “
Determining nodes, finite difference schemes and inertial manifolds
,”
Nonlinearity
4
,
135
153
(
1991
).
14.
Galdi
,
G. P.
,
An Introduction to the Mathematical Theory of the Navier-Stokes Equations. Vol. I. Linearized Steady Problems
,
Springer Tracts in Natural Philosophy Vol. 38
, revised ed. (
Springer-Verlag
,
New York
,
1998
).
15.
Galdi
,
G. P.
,
An Introduction to the Mathematical Theory of the Navier-Stokes Equations. Vol. II. Nonlinear Steady Problems
,
Springer Tracts in Natural Philosophy Vol. 39
, revised ed. (
Springer-Verlag
,
New York
,
1998
).
16.
Galdi
,
G. P.
, “
Determining modes, nodes and volume elements for stationary solutions of the Navier-Stokes problem past a three-dimensional Body
,”
Arch. Ration. Mech. Anal.
180
,
97
126
(
2006
).
17.
Galdi
,
G. P.
,
Heywood
,
J. G.
, and
Shibata
,
Y.
, “
On the global existence and convergence to steady state of Navier-Stokes flow past an obstacle that is started from the rest
,”
Arch. Ration. Mech. Anal.
138
,
307
319
(
1997
).
18.
Galdi
,
G. P.
, and
Padula
,
M.
, “
A new approach to energy theory in the stability of fluid motion
,”
Arch. Ration. Mech. Anal.
110
,
187
286
(
1990
).
19.
Galdi
,
G. P.
, and
Rabier
,
P. J.
,
Topics in Nonlinear Analysis
,
Progress in Nonlinear Differential Equations and their Applications Vol. 35
(
Birkhäuser
,
Basel
,
1999
), pp.
273
303
.
20.
Galdi
,
G. P.
, and
Rabier
,
P. J.
, “
Sharp existence results for the stationary Navier-Stokes problem in three-dimensional exterior domains
,”
Arch. Ration. Mech. Anal.
154
,
343
368
(
2000
).
21.
Galdi
,
G. P.
, and
Silvestre
,
A.
, “
On the steady motion of a Navier-Stokes liquid around a rigid body
,”
Arch. Ration. Mech. Anal.
(in press).
22.
Gohberg
,
I.
,
Goldberg
,
S.
, and
Kaashoek
,
M. A.
,
Classes of Linear Operators: I. Operator Theory
,
Advances and Applications Vol. 49
(
Birkhäuser
,
Basel
,
1990
).
23.
Heywood
,
J. G.
, “
The Navier-Stokes equations: On the existence, regularity and decay of solutions
,”
Indiana Univ. Math. J.
29
,
639
681
(
1980
).
24.
Ladyzhenskaya
,
O. A.
, “
Investigation of the Navier-Stokes equation for a stationary flow of an incompressible fluid
,”
Usp. Mat. Nauk
14
,
75
97
(
1959
).
25.
Ladyzhenskaya
,
O. A.
,
The Mathematical Theory of Viscous Incompressible Flow
(
Gordon and Breach
,
New York
,
1969
).
26.
Leray
,
J.
, “
Etude de diverses équations intégrales non linéaires et de quelques problèmes que Pose l’ hydrodynamique
,”
J. Math. Pures Appl.
12
,
1
82
(
1933
).
27.
Leray
,
J.
, “
Les problémes non linéaires
,”
Enseign. Math.
35
,
139
151
(
1936
).
28.
Maremonti
,
P.
, “
Stabilità asintotica in media per moti fluidi viscosi in domini esterni
,”
Ann. Mat. Pura Appl.
142
,
57
75
(
1985
).
29.
Miyakawa
,
T.
, and
Sohr
,
H.
, “
On energy inequality, smoothness and large time behavior in L2 for weak solutions of the Navier-Stokes equations in exterior domains
,”
Math. Z.
199
,
455
478
(
1988
).
30.
Nakamura
,
I.
, “
Steady wake behind a sphere
,”
Phys. Fluids
19
,
5
8
(
1976
).
31.
Saut
,
J.-C.
, and
Temam
,
R.
, “
Generic properties of Navier-Stokes equations: Genericity with respect to the boundary values
,”
Indiana Univ. Math. J.
29
,
427
446
(
1980
).
32.
Smale
,
S.
, “
An infinite dimensional version of sards theorem.
,”
Am. J. Math.
87
,
861
866
(
1965
).
33.
Stein
,
E. M.
,
Singular Integrals and Differentiability Properties of Functions
(
Princeton University Press
,
Princeton
,
1970
).
34.
Tomboulides
,
A. G.
, and
Orszag
,
S. A.
, “
Numerical investigation of transitional and weak turbulent flow past a sphere
,”
J. Fluid Mech.
416
,
45
73
(
2000
).
35.
Zeidler
,
E.
,
Nonlinear Functional Analysis and Applications
(
Springer-Verlag
,
New York
,
1986
), Vol.
1
.
36.
Zeidler
,
E.
,
Nonlinear Functional Analysis and Applications
(
Springer-Verlag
,
New York
,
1988
), Vol.
4
.
You do not currently have access to this content.