We clarify the mathematical structure underlying unitaryt-designs. These are sets of unitary matrices, evenly distributed in the sense that the average of any tth order polynomial over the design equals the average over the entire unitary group. We present a simple necessary and sufficient criterion for deciding if a set of matrices constitutes a design. Lower bounds for the number of elements of 2-designs are derived. We show how to turn mutually unbiased bases into approximate 2-designs whose cardinality is optimal in leading order. Designs of higher order are discussed and an example of a unitary 5-design is presented. We comment on the relation between unitary and spherical designs and outline methods for finding designs numerically or by searching character tables of finite groups. Further, we sketch connections to problems in linear optics and questions regarding typical entanglement.

1.
H.
Koenig
,
Cubature formulas on spheres
, http://analysis.math.uni-kiel.de/koenig/preprints.html
2.
G.
Zauner
, Ph.D. thesis,
University of Vienna
,
1999
;
3.
J. M.
Renes
,
R.
Blume-Kohout
,
A. J.
Scott
, and
C. M.
Caves
,
J. Math. Phys.
45
,
2171
(
2004
);
D. M.
Appleby
,
J. Math. Phys.
46
,
052107
(
2005
).
4.
A.
Hayashi
,
T.
Hashimoto
, and
M.
Horibe
,
Phys. Rev. A
72
,
032325
(
2005
).
5.
S.
Iblisdir
and
J.
Roland
, e-print quant-ph/0410237.
6.
A.
Klappenecker
and
M.
Rötteler
,
Proceedings of the IEEE International Symposium on Information Theory
, (
2005
), p.
1740
.
8.
W. K.
Wootters
and
B. C.
Fields
,
Ann. Phys. (N.Y.)
16
,
391
(
1989
);
S.
Bandyopadhyay
,
P. O.
Boykin
,
V.
Roychowdhury
, and
F.
Vatan
,
Algorithmica
34
,
512
(
2002
);
S.
Chaturvedi
,
Phys. Rev. A
65
,
044301
(
2002
).
9.
C.
Dankert
M.Sc. thesis,
University of Waterloo
,
2005
; also available at e-print quant-ph/0512217.
10.
C.
Dankert
,
R.
Cleve
,
J.
Emerson
, and
E.
Livine
, e-print quant-ph/0606161.
11.
C. A.
Fuchs
and
M.
Sasaki
,
Quantum Inf. Comput.
3
,
377
(
2003
).
12.
H. F.
Chau
,
IEEE Trans. Inf. Theory
51
,
1451
(
2005
).
13.
D.
DiVincenzo
,
D. W.
Leung
, and
B. M.
Terhal
,
IEEE Trans. Inf. Theory
48
,
580
(
2002
).
14.
G.
Tóth
and
J. J.
Garcia-Ripoll
, e-print quant-ph/0609052.
15.
A.
Serafini
,
O. C. O.
Dahlsten
, and
M. B.
Plenio
, e-print quant-ph/0610090;
A.
Serafini
,
O. C. O.
Dahlsten
,
D.
Gross
, and
M. B.
Plenio
, e-print quant-ph/0701051.
16.
J. I.
Cirac
,
J.
Eisert
,
G.
Giedke
,
M.
Lewenstein
,
M. B.
Plenio
,
R. F.
Werner
, and
M. M.
Wolf
(unpublished).
17.
R. F.
Werner
,
Phys. Rev. A
40
,
04277
(
1989
).
18.
C. H.
Bennett
,
D. P.
DiVincenzo
,
J. A.
Smolin
, and
W. K.
Wootters
,
Phys. Rev. A
54,
3824
(
1996
).
19.
W.
Dür
,
J. I.
Cirac
,
M.
Lewenstein
, and
D.
Bruss
,
Phys. Rev. A
61
,
062313
(
2000
).
20.
D.
Gottesman
, e-print quant-ph/9807006.
21.

Be aware that the Clifford group which appears in the context of quantum information theory (Ref. 20) has no connection to the Clifford group used, e.g., in the representation theory of SO (n) (Ref. 33).

22.
W.
Dür
,
M.
Hein
,
J. I.
Cirac
, and
H.-J.
Briegel
,
Phys. Rev. A
72
,
052326
(
2005
).
23.

More precisely, Eq. (8) is the second frame potential (Ref. 3), the tth one being induced by a repulsive force proportional to ψkψkt. As we will be concerned only with the second potential, we will drop the attribute from now on.

24.

The connection between Eq. (10) and the Jamiołkowski isomorphism [Eq. (6)] is given by vUvU=d2CUU.

25.

Take, e.g., Ai,j=ij+ji, Bi,j=i(ijji). For ij, all operators Ai,j, Bi,j have the same set of eigenvalues 1,1,0,0, and are thus mutually conjugate. These operators clearly form a basis in the space of traceless observables.

26.
I. M.
Issacs
,
Character Theory of Finite Groups
(
Academic
,
New York
,
1976
).
27.
The GAP Group, GAP—Groups, Algorithms, Programming, Version 4.4.7,
2006
(http://www.gap-system.org).
28.
T.
Breuer
,
Manual for the GAP Character Table Library Version 1.1
(
Lehrstuhl D für Mathematik
,
Rheinisch Westfälische Hochschule, Aachen
,
2004
).
29.
D.
Fattal
,
T. S.
Cubitt
,
Y.
Yamamoto
,
S.
Bravyi
, and
I. L.
Chuang
, e-print quant-ph/0406168;
M.
Hein
,
J.
Eisert
, and
H. J.
Briegel
,
Phys. Rev. A
69
,
062311
(
2004
);
K. M. R.
Audenaert
and
M. B.
Plenio
,
New J. Phys.
7
,
73
(
2005
).
30.
D.
Gross
,
J. Math. Phys.
47
,
122107
(
2006
).
31.
D.
Gross
, thesis,
University of Potsdam
,
2005
;
32.
D.
Jungnickel
,
Finite fields
(
BI-Wiss.-Verl.
,
Mannheim
,
1993
).
33.
A.
Pittenger
and
M.
Rubin
,
J. Phys. A
38
,
6005
(
2005
).
34.
A.
Gilchrist
,
N. K.
Langford
, and
M. A.
Nielsen
,
Phys. Rev. A
71
,
062310
(
2005
).
35.
B.
Huppert
,
Endliche Gruppen
(
Springer
,
Berlin
,
1967
).
36.
B.
Simon
,
Representations of Finite and Compact Groups
(
American Mathematical Society
,
Providence, RI
,
1996
);
W.
Fulton
and
J.
Harris
,
Representation Theory
(
Springer
,
New York
,
1991
).
37.
P.
Kok
,
W. J.
Munro
,
K.
Nemoto
,
T. C.
Ralph
,
J. P.
Dowling
, and
G. J.
Milburn
,
Rev. Mod. Phys.
79
,
135
(
2007
).
38.
Arvind
,
B.
Dutta
,
N.
Mukunda
, and
R.
Simon
,
Pramana
45
,
471
(
1995
).
39.
J.
Eisert
and
M. B.
Plenio
,
Int. J. Quantum Inf.
1
,
479
(
2003
).
40.
M. M.
Wolf
,
J.
Eisert
, and
M. B.
Plenio
,
Phys. Rev. Lett.
90
,
047904
(
2003
).
41.
E.
Lubkin
,
J. Math. Phys.
19
,
5
(
1978
);
S. K.
Foong
and
S.
Kanno
,
Phys. Rev. Lett.
72
,
1148
(
1994
).
[PubMed]
42.
P.
Hayden
,
D. W.
Leung
, and
A.
Winter
,
Commun. Math. Phys.
265
,
95
(
2006
).
43.
O.
Dahlsten
and
M. B.
Plenio
,
Stat. Probab. Lett.
6
,
527
(
2006
).
44.
K.
Zyczkowski
and
H.-J.
Sommers
,
J. Phys. A
34
,
7111
(
2001
).
45.
V.
Dabbaghian-Abdoly
,
J. Symb. Comput.
39
,
671
(
2005
).
46.
J. J.
Benedetto
and
M.
Fickus
,
Adv. Comput. Math.
18
,
357
(
2003
).
47.
P. D.
Seymour
and
T.
Zaslavsky
,
Adv. Math.
52
,
213
(
1984
).
You do not currently have access to this content.