In this work we get the formula (5) that it allows the explicit computation of the renormalized partition function associated with a physical system, whose states belong to a differentiable manifold of finite dimension, and whose energy function is invariant under the action of a compact Lie group. Furthermore, we extend the formula above to the infinite dimensional case using ζ-regularization technique.

1.
R. S.
Barreto
,
O Funcional de Polyakov
(
UPFE
, Tese de Mestrado
1994
).
2.
M.
Bordag
,
E.
Elizalde
, and
K.
Kirsten
, “
Heat kernel coefficients of the Laplace operator on the D-dimensional ball
,”
J. Math. Phys.
37
,
895
916
(
1996
).
3.
M.
Bordag
,
E.
Elizalde
,
K.
Kirsten
, and
S.
Leseduarte
, “
Casimir energies for massive fields in the bag
,”
Phys. Rev. D
56
,
4896
4904
(
1997
).
4.
M.
Bordag
,
E.
Elizalde
,
K.
Kirsten
, and
S.
Leseduarte
, “
Casimir energy for a massive fermionic quantum field with a spherical boundary
,”
J. Phys. A
31
,
1743
1759
(
1998
).
5.
J. B.
Bost
, “
Fibres determinants, determinants regularises et mesures sur les espaces de modules de courbes complexes
,”
Asterisque
152–153
,
113
149
(
1987
).
6.
A. P.
Calderón
and
A.
Zygmund
, “
Singular integral operators and differential equations
,”
Am. J. Math.
79
,
901
921
(
1957
).
7.
G.
Cognola
,
E.
Elizalde
, and
S.
Zerbini
, “
Heat-kernel expansion on noncompact domains and a generalized zeta-function regularization procedure
,”
J. Math. Phys.
47
(
8
),
083516
(
2006
).
8.
M. P.
do Carmo
,
Geometria Riemanniana
(
IMPA
,
Rio de Janeiro
,
1979
).
9.
E.
Elizalde
, “
Explicit zeta functions for bosonic and fermionic fields on a non-commutative toroidal spacetime
,”
J. Phys. A
34
,
3025
3035
(
2001
).
10.
E.
Elizalde
, “
Multidimensional Extension of the Generalized Chowla-Selberg Formula
,”
Commun. Math. Phys.
198
,
83
95
(
1998
.
11.
E.
Elizalde
,
Ten Physical Applications of Spectral Zeta Functions
(
World Scientific
,
Singapore
,
1994
).
12.
E.
Elizalde
, “
Zeta functions: formulas and applications
,”
J. Comput. Appl. Math.
118
,
125
142
(
2000
).
13.
E.
Elizalde
and
K.
Kirsten
, “
Casimir energy of a massive field in a genus-1 surface
,”
Phys. Lett. B
365
,
72
78
(
1995
).
14.
E.
Elizalde
,
L.
Vanzo
, and
S.
Zerbini
, “
Zeta-Function Regularization, the Multiplicative Anomaly and the Wodzicki Residue
,”
Commun. Math. Phys.
194
,
613
630
(
1998
).
15.
E.
Elizalde
,
S. D.
Odintsov
,
A.
Romeo
,
A. A.
Bytsenko
, and
S.
Zerbini
,
Zeta Regularization Techniques with Applications
(
World Scientific
,
Singapore
,
1994
).
16.
P.
Gómez
,
R.
Mendoza
, and
F.
Moraes
, “
Fluctuating metrics in one-dimensional manifolds
,”
J. Math. Phys.
38
(
10
),
5293
5300
(
1997
).
17.
R.
Hamilton
, “
The inverse function Theorem of Nash and Moser
,”
Bull., New Ser., Am. Math. Soc.
7
(
1
),
65
222
(
1982
).
18.
S. W.
Hawking
, “
Zeta function regularization of path integrals in curved space-time
,”
Commun. Math. Phys.
55
,
133
148
(
1977
).
19.
S.
Helgason
,
Differential Geometry, Lie Groups and Symmetric Spaces
(
Academic
,
New York
,
1978
).
20.
R.
Mendoza
,
J.
Rojas
, and
F.
Moraes
, “
Partition function for a nonlinear supersymmetric model
,”
J. Phys. A
33
(
48
),
8887
8892
(
2000
).
21.
B.
Osgood
,
R.
Phillips
, and
P.
Sarnak
, “
Moduli space, heights and isospectral sets of plane domains
,”
Ann. Math.
129
,
293
362
(
1989
).
22.
A. M.
Polyakov
, “
Quantum geometry of bosonic strings
,”
Phys. Lett.
103B
,
207
210
(
1981
).
23.
A. M.
Polyakov
, “
Quantum geometry of fermionic strings
,”
Phys. Lett.
103B
,
211
213
(
1981
).
24.
A. M.
Polyakov
,
Gauge Theory and Strings
(
Harcourt Brace Jovanovich
,
New York
,
1987
).
25.
D. B.
Ray
and
I. M.
Singer
, “
R-torsion and the Laplacian on Riemannian manifolds
,”
Adv. Math.
7
,
145
210
(
1971
).
26.
R. T.
Seeley
, “
Complex powers of an elliptic operator
,”
Proc. Symp. Pure Math.
10
,
288
307
(
1967
).
27.
A.
Tromba
,
Teichmüller Theory in Riemann Geometry
(
Birkhauser
,
Zurich
,
1992
).
You do not currently have access to this content.