We derive and study a quantum group gp,q that is Kazhdan-Lusztig dual to the W-algebra Wp,q of the logarithmic (p,q) conformal field theory model. The algebra Wp,q is generated by two currents W+(z) and W(z) of dimension (2p1)(2q1) and the energy-momentum tensor T(z). The two currents generate a vertex-operator ideal R with the property that the quotient Wp,qR is the vertex-operator algebra of the (p,q) Virasoro minimal model. The number (2pq) of irreducible gp,q representations is the same as the number of irreducible Wp,q representations on which R acts nontrivially. We find the center of gp,q and show that the modular group representation on it is equivalent to the modular group representation on the Wp,q characters and “pseudocharacters.” The factorization of the gp,q ribbon element leads to a factorization of the modular group representation on the center. We also find the gp,q Grothendieck ring, which is presumably the “logarithmic” fusion of the (p,q) model.

1.
T.
Kerler
and
V. V.
Lyubashenko
,
Non-Semisimple Topological Quantum Field Theories for 3-Manifolds with Corners
,
Springer Lecture Notes in Mathematics
Vol.
1765
(
Springer-Verlag
,
Berlin
,
2001
).
2.
J.
Fuchs
,
S.
Hwang
,
A. M.
Semikhatov
, and
I. Yu.
Tipunin
,
Commun. Math. Phys.
247
,
713
(
2004
),
3.
M.
Miyamoto
, e-print math.QA/0209101.
4.
Y.-Z.
Huang
,
J.
Lepowsky
, and
L.
Zhang
, e-print math.QA/0311235.
5.
B. L.
Feigin
,
A. M.
Gainutdinov
,
A. M.
Semikhatov
, and
I. Yu.
Tipunin
,
Commun. Math. Phys.
265
,
47
(
2006
),
6.
M.
Flohr
and
M. R.
Gaberdiel
, e-print, hep-th/0509075.
7.
B. L.
Feigin
,
A. M.
Gainutdinov
,
A. M.
Semikhatov
, and
I. Yu.
Tipunin
, e-print math.QA/0512621.
8.
J.
Fuchs
, e-print hep-th/0602051.
9.
10.
11.
H.
Saleur
and
B.
Duplantier
,
Phys. Rev. Lett.
58
,
2325
(
1987
).
12.
D.
Kazhdan
and
G.
Lusztig
,
J. Am. Math. Soc.
6
,
905
(
1993
);
D.
Kazhdan
and
G.
Lusztig
,
J. Am. Math. Soc.
6
,
949
(
1993
);
D.
Kazhdan
and
G.
Lusztig
,
J. Am. Math. Soc.
7
,
335
(
1994
);
D.
Kazhdan
and
G.
Lusztig
,
J. Am. Math. Soc.
7
,
383
(
1994
).
13.
G.
Felder
,
Nucl. Phys.
317
,
215
(
1989
).
14.
P.
Bouwknegt
,
J.
McCarthy
, and
K.
Pilch
,
Lett. Math. Phys.
23
,
193
(
1991
),
15.
M. A. I.
Flohr
,
Int. J. Mod. Phys. A
11
,
4147
(
1996
),
16.
M.
Flohr
,
Int. J. Mod. Phys. A
12
,
1943
(
1997
),
17.
V.
Lyubashenko
,
Commun. Math. Phys.
172
,
467
(
1995
),
Symposia Gaussiana, Proceedings of the Seconnd Gauss Symposium, Munich, 1993, Conference A
(
de Gruyter
,
Berlin
,
1995
), pp.
529
579
,
J. Pure Appl. Algebra
98
,
279
(
1995
).
18.
V.
Lyubashenko
and
S.
Majid
,
J. Algebra
166
,
506
(
1994
).
19.
T.
Kerler
,
Commun. Math. Phys.
168
,
253
(
1995
),
20.
A.
Lachowska
, e-print math.QA/0107098.
21.
V. G.
Drinfeld
,
Leningrad Math. J.
1
,
321
(
1990
).
22.
B. L.
Feigin
,
A. M.
Gainutdinov
,
A. M.
Semikhatov
, and
I. Yu.
Tipunin
,
Nucl. Phys. B
757
,
303
(
2006
),
23.
J. L.
Cardy
,
Nucl. Phys. B
324
,
581
(
1989
).
24.
R. G.
Larson
and
M. E.
Sweedler
,
Am. J. Math.
91
,
75
(
1969
).
25.
D. E.
Radford
,
Am. J. Math.
98
,
333
(
1976
).
26.
C.
Kassel
,
Quantum Groups
(
Springer-Verlag
,
New York
,
1995
).
27.
V.
Chari
and
A.
Pressley
,
A Guide to Quantum Groups
(
Cambridge University Press
,
Cambridge
,
1994
).
28.
M. E.
Sweedler
,
Hopf Algebras
(
Benjamin
,
New York
1969
).
29.
D. E.
Radford
,
J. Algebra
163
,
583
(
1994
).
30.
N. Yu.
Reshetikhin
and
M. A.
Semenov-Tian-Shansky
,
J. Geom. Phys.
5
,
533
(
1988
).
You do not currently have access to this content.