We give a new 2+1 dimensional nonisospectral generalization of the Toda lattice hierarchy. Reductions yield a variety of new integrable hierarchies along with their underlying linear problems, including new 1+1 dimensional differential-delay hierarchies (nonisospectral and isospectral), new ordinary differential-delay hierarchies, and new discrete Painlevé hierarchies. We also show that a reduction in components yields our previously obtained 2+1 dimensional nonisospectral Volterra lattice hierarchy.

1.
C. S.
Gardner
,
J. M.
Greene
,
M. D.
Kruskal
, and
R. M.
Miura
,
Phys. Rev. Lett.
19
,
1095
(
1967
).
2.
P. D.
Lax
,
Commun. Pure Appl. Math.
21
,
467
(
1968
).
3.
V. E.
Zakharov
and
A. B.
Shabat
,
Zh. Eksp. Teor. Fiz.
61
,
118
(
1971
);
V. E.
Zakharov
and
A. B.
Shabat
,[
Sov. Phys. JETP
34
,
62
(
1972
)].
4.
V. E.
Zakharov
and
A. B.
Shabat
,
Funkc. Anal. Priloz.
8
,
43
(
1974
);
V. E.
Zakharov
and
A. B.
Shabat
,[
Funct. Anal. Appl.
8
,
226
(
1974
)].
5.
V. S.
Dryuma
,
Zh. Eksp. Teor. Fiz. Pis'ma Red.
19
,
753
(
1974
);
V. S.
Dryuma
,[
JETP Lett.
19
,
387
(
1974
)].
6.
H.
Flaschka
,
Phys. Rev. B
9
,
1924
(
1974
).
7.
H.
Flaschka
,
Prog. Theor. Phys.
51
,
703
(
1974
).
8.
S. V.
Manakov
,
Zh. Eksp. Teor. Fiz.
67
,
543
(
1974
);
S. V.
Manakov
,[
Sov. Phys. JETP
40
,
269
(
1975
)].
9.
M. J.
Ablowitz
and
J. F.
Ladik
,
J. Math. Phys.
16
,
598
(
1975
).
10.
F.
Calogero
,
Lett. Nuovo Cimento Soc. Ital. Fis.
14
,
443
(
1975
).
11.
M.
Toda
,
J. Phys. Soc. Jpn.
22
,
431
(
1967
).
12.
M.
Toda
,
Suppl. Prog. Theor. Phys.
45
,
174
(
1970
).
13.
M.
Wadati
,
Suppl. Prog. Theor. Phys.
59
,
36
(
1976
).
14.
B. A.
Kupershmidt
,
Discrete Lax Equations and Differential-Difference Calculus
,
Astérisque No. 123
(
Soc. Math. France
,
Paris
,
1985
).
15.
M.
Toda
,
Theory of Nonlinear Lattices
, 2nd ed. (
Springer
,
Berlin
,
1989
).
16.
P. R.
Gordoa
,
A.
Pickering
, and
Z. N.
Zhu
,
J. Math. Phys.
46
,
103509
(
2005
).
17.
P. R.
Gordoa
,
A.
Pickering
, and
Z. N.
Zhu
,
J. Nonlinear Math. Phys.
12
, Suppl. 2,
180
(
2005
).
18.
D.
Levi
and
O.
Ragnisco
,
J. Phys. A
12
,
L157
(
1979
).
19.
D.
Levi
and
O.
Ragnisco
,
J. Phys. A
12
,
L163
(
1979
).
20.
F.
Calogero
and
A.
Degasperis
,
Spectral Transform and Solitons I
(
North-Holland
,
Amsterdam
,
1982
).
22.
D.
Levi
and
O.
Ragnisco
,
Inverse Probl.
4
,
815
(
1988
).
23.
O. I.
Bogoyavlenskii
,
Usp. Mat. Nauk
45
,
17
(
1990
);
O. I.
Bogoyavlenskii
,
Russ. Math. Surveys
45
,
1
(
1990
).
24.
Y.-S.
Li
and
Y.-J.
Zhang
,
J. Phys. A
26
,
7487
(
1993
).
25.
D.
Levi
,
O.
Ragnisco
, and
M. A.
Rodríguez
,
Teor. Mat. Fiz.
93
,
473
(
1992
);
D.
Levi
,
O.
Ragnisco
, and
M. A.
Rodríguez
,[
Theor. Math. Phys.
93
,
1409
(
1993
)].
26.
P. R.
Gordoa
and
A.
Pickering
,
J. Math. Phys.
40
,
5749
(
1999
).
27.
P. R.
Gordoa
,
A.
Pickering
, and
Z. N.
Zhu
,
Chaos, Solitons Fractals
29
,
862
(
2006
).
28.
R.
Hirota
,
J. Phys. Soc. Jpn.
50
,
3785
(
1981
).
29.
K.
Kajiwara
and
J.
Satsuma
,
J. Math. Phys.
32
,
506
(
1991
).
30.
J.
Villarroel
and
M. J.
Ablowitz
,
Physica D
65
,
48
(
1993
).
31.
W.-X.
Ma
and
B.
Fuchssteiner
,
J. Math. Phys.
40
,
2400
(
1999
).
32.
P. R.
Gordoa
and
A.
Pickering
(unpublished).
33.
B.
Grammaticos
and
A.
Ramani
,
J. Math. Phys.
31
,
5787
(
1998
).
34.
M.
Jimbo
and
T.
Miwa
,
Physica D
2
,
407
(
1981
).
35.
A. S.
Fokas
,
B.
Grammaticos
, and
A.
Ramani
,
J. Math. Anal. Appl.
180
,
342
(
1993
).
36.
V. I.
Gromak
and
V. V.
Tsegel’nik
,
Differents. Uravn.
,
30
,
1118
(
1994
);
V. I.
Gromak
and
V. V.
Tsegel’nik
,
Diff. Eq.
30
,
1037
(
1994
).
You do not currently have access to this content.