A commutative positive operator valued (POV) measure F with real spectrum is characterized by the existence of a projection valued measure E (the sharp reconstruction of F) with real spectrum such that F can be interpreted as a randomization of E. This paper focuses on the relationships between this characterization of commutative POV measures and Neumark’s extension theorem. In particular, we show that in the finite dimensional case there exists a relation between the Neumark operator corresponding to the extension of F and the sharp reconstruction of F. The relevance of this result to the theory of nonideal quantum measurement and to the definition of unsharpness is analyzed.

1.
E. B.
Davies
and
J. T.
Lewis
,
Commun. Math. Phys.
17
,
239
(
1970
).
2.
G.
Ludwig
,
Foundations of Quantum Mechanics
(
Springer-Verlag
,
New York
,
1983
), Vol.
I
.
3.
A. S.
Holevo
,
Probabilistics and Statistical Aspects of Quantum Theory
(
North Holland
,
Amsterdam
,
1982
).
4.
A. S.
Holevo
,
Statistical Structure of Quantum Theory
,
Lecture Notes in Physics
, Vol.
67
(
Springer
,
New York
,
2001
).
5.
A. S.
Holevo
,
Rep. Math. Phys.
22
,
385
(
1985
).
6.
Y.
Yamamoto
and
H. A.
Haus
,
Rev. Mod. Phys.
58
,
1001
(
1986
).
7.
M.
Hillery
,
R. F.
O‘Connell
,
M. O.
Scully
, and
E. P.
Wigner
,
Phys. Rep.
106
,
121
(
1984
).
8.
E.
Prugovecki
,
Stochastic Quantum Mechanics and Quantum Spacetime
(
Reidel
,
Dordrecht
,
1984
).
9.
C. W.
Helstrom
,
Quantum Detection and Estimation Theory
(
Academic
,
New York
,
1976
).
10.
P.
Busch
,
M.
Grabowski
, and
P.
Lahti
,
Operational Quantum Physics
,
Lecture Notes in Physics
Vol.
31
(
Springer-Verlag
,
Berlin
,
1995
).
11.
M. A.
Neumark
,
Izv. Akad. Nauk SSSR, Ser. Mat.
4
,
277
(
1940
).
12.
A. S.
Holevo
,
Trans. Mosc. Math. Soc.
26
,
133
(
1972
).
13.
A. S.
Holevo
,
J. Multivariate Anal.
3
,
337
394
(
1973
).
14.
S. T.
Ali
,
Lect. Notes Math.
905
,
207
(
1982
).
15.
G.
Cattaneo
and
G.
Nisticó
,
J. Math. Phys.
41
,
4365
(
2000
).
16.
R.
Beneduci
and
G.
Nisticó
,
J. Math. Phys.
44
,
5461
(
2003
).
17.
R.
Beneduci
,
J. Math. Phys.
47
,
062104
, (
2006
).
18.
R.
Beneduci
,
Int. J. Geom. Methods Mod. Phys.
3
,
1559
, (
2006
).
19.
M.
Reed
and
B.
Simon
,
Methods of Modern Mathematical Physics
(
Academic
,
New York
,
1980
).
20.
H.
Martens
and
W. M.
de Muynck
,
Found. Phys.
20
,
357
(
1990
).
21.
H.
Martens
and
W. M.
de Muynck
,
Found. Phys.
20
,
255
(
1989
).
22.
F. E.
Schroeck
, Jr.
,
Int. J. Theor. Phys.
28
,
247
(
1989
).
23.
M.
Grabowski
,
Found. Phys.
19
,
923
(
1989
).
24.
S. T.
Alí
and
H. D.
Doebner
,
J. Math. Phys.
17
,
1105
(
1976
).
25.
J.
Uffink
,
Int. J. Theor. Phys.
33
,
199
(
1994
).
26.
R.
Beals
,
Topics in Operator Theory
(
The University of Chicago Press
,
Chicago
,
1971
).
27.
S. K.
Berberian
,
Notes on Spectral Theory
,
Van Nostrand Mathematical Studies
Vol.
5
(
Van Nostrand
,
New Jersey
,
1966
).
28.
N.
Dunford
and
J. T.
Schwartz
,
Linear Operators
(
Interscience
,
New York
,
1963
), Pt. II.
29.
N. I.
Akhiezer
and
I. M.
Glazman
,
Theory of Linear Operators in Hilbert Space
(
Ungar
,
New York
,
1963
).
30.
J.
von Neumann
,
Mathematical Foundations of Quantum Mechanics
(
Princeton University Press
,
Princeton
,
1955
).
31.
F.
Riesz
and
B. S.
Nagy
,
Functional Analysis
(
Dover
,
New York
,
1990
).
32.
M.
Loève
,
Probability Theory
, 4th ed., (
Springer-Verlag
,
Berlin
,
1977
), Vol.
I
.
33.
J. F. C.
Kingman
and
S. J.
Taylor
,
Introduction to Measure and Probability
(
Cambridge University Press
,
Cambridge
,
1966
).
34.
G.
Cattaneo
,
T.
Marsico
,
G.
Nisticó
, and
G.
Bacciagaluppi
,
Found. Phys.
27
,
1323
(
1997
).
35.
P.
Bush
and
F. E.
Schroeck
,
Found. Phys.
19
,
807
(
1989
).
36.
T. H.
Hildebrandt
,
Theory of Integration
(
Academic
,
New York
,
1963
).
You do not currently have access to this content.