We introduce a system of partial differential equations, whose solutions permit to determine explicitly locally homogeneous Lorentzian metrics in R3 having the prescribed admissible Ricci tensor. Solutions of this system are presented for all the different models of homogeneous Lorentzian three spaces.

1.
Bueken
,
P.
, “
On curvature homogeneous three-dimensional Lorentzian manifolds
,”
J. Geom. Phys.
22
,
349
362
(
1997
).
2.
Bueken
,
P.
, “
Three-dimensional Lorentzian manifolds with constant principal Ricci curvatures ρ1=ρ2ρ3
,”
J. Math. Phys.
38
,
1000
1013
(
1997
).
3.
Bueken
,
P.
, “
Three-dimensional Riemannian manifolds with constant principal Ricci curvatures ρ1=ρ2ρ3
,”
J. Math. Phys.
37
,
4062
4075
(
1996
).
4.
Calvaruso
,
G.
, “
Einstein-like metrics on three-dimensional homogeneous Lorentzian manifolds
,”
Geom. Dedic.
127
,
99
119
(
2007
).
5.
Calvaruso
,
G.
, “
Homogeneous structures on three-dimensional Lorentzian manifolds
,”
J. Geom. Phys.
57
,
1279
1291
(
2007
).
6.
Calvaruso
,
G.
, “
Pseudo-Riemannian 3-manifolds with prescribed distinct constant Ricci eigenvalues
,”
Diff. Geom. Applic.
(in press).
7.
Cordero
,
L. A.
, and
Parker
,
P. E.
, “
Left-invariant Lorentzian metrics on 3-dimensional Lie groups
,”
Rend. Mat., Serie VII
17
,
129
155
(
1997
).
8.
DeTurck
,
D. M.
, “
Existence of metrics with prescribed Ricci curvature: local theory
,”
Invent. Math.
65
,
179
207
(
1981
).
9.
DeTurck
,
D. M.
, “
The Cauchy problem for Lorentz metrics with prescribed Ricci curvature
,”
Compos. Math.
48
,
327
349
(
1983
).
10.
DeTurck
,
D. M.
, “
The equation of prescribed Ricci curvature
,”
Bull., New Ser., Am. Math. Soc.
3
,
701
704
(
1980
).
11.
Kowalski
,
O.
, and
Nikcević
,
S.
, “
On Ricci eigenvalues of locally homogeneous Riemannian 3-manifolds
,”
Geom. Dedic.
62
,
65
72
(
1996
).
12.
Kowalski
,
O.
, and
Prüfer
,
F.
, “
On Riemannian 3-manifolds with distinct constant Ricci eigenvalues
,”
Math. Ann.
300
,
17
28
(
1994
).
13.
Milnor
,
J.
, “
Problems of present-day mathematics (Sec. XV. Differential Geometry)
,”
Proc. Symp. Pure Math.
28
,
54
57
(
1973
).
14.
O’Neill
,
B.
,
Semi-Riemannian Geometry
(
Academic
,
New York
,
1983
).
15.
Rahmani
,
S.
, “
Métriques de Lorentz sur les groupes de Lie unimodulaires de dimension trois
,”
J. Geom. Phys.
9
,
295
302
(
1992
).
You do not currently have access to this content.