We introduce a system of partial differential equations, whose solutions permit to determine explicitly locally homogeneous Lorentzian metrics in having the prescribed admissible Ricci tensor. Solutions of this system are presented for all the different models of homogeneous Lorentzian three spaces.
REFERENCES
1.
Bueken
, P.
, “On curvature homogeneous three-dimensional Lorentzian manifolds
,” J. Geom. Phys.
22
, 349
–362
(1997
).2.
Bueken
, P.
, “Three-dimensional Lorentzian manifolds with constant principal Ricci curvatures
,” J. Math. Phys.
38
, 1000
–1013
(1997
).3.
Bueken
, P.
, “Three-dimensional Riemannian manifolds with constant principal Ricci curvatures
,” J. Math. Phys.
37
, 4062
–4075
(1996
).4.
Calvaruso
, G.
, “Einstein-like metrics on three-dimensional homogeneous Lorentzian manifolds
,” Geom. Dedic.
127
, 99
–119
(2007
).5.
Calvaruso
, G.
, “Homogeneous structures on three-dimensional Lorentzian manifolds
,” J. Geom. Phys.
57
, 1279
–1291
(2007
).6.
Calvaruso
, G.
, “Pseudo-Riemannian 3-manifolds with prescribed distinct constant Ricci eigenvalues
,” Diff. Geom. Applic.
(in press).7.
Cordero
, L. A.
, and Parker
, P. E.
, “Left-invariant Lorentzian metrics on 3-dimensional Lie groups
,” Rend. Mat., Serie VII
17
, 129
–155
(1997
).8.
DeTurck
, D. M.
, “Existence of metrics with prescribed Ricci curvature: local theory
,” Invent. Math.
65
, 179
–207
(1981
).9.
DeTurck
, D. M.
, “The Cauchy problem for Lorentz metrics with prescribed Ricci curvature
,” Compos. Math.
48
, 327
–349
(1983
).10.
DeTurck
, D. M.
, “The equation of prescribed Ricci curvature
,” Bull., New Ser., Am. Math. Soc.
3
, 701
–704
(1980
).11.
Kowalski
, O.
, and Nikcević
, S.
, “On Ricci eigenvalues of locally homogeneous Riemannian 3-manifolds
,” Geom. Dedic.
62
, 65
–72
(1996
).12.
Kowalski
, O.
, and Prüfer
, F.
, “On Riemannian 3-manifolds with distinct constant Ricci eigenvalues
,” Math. Ann.
300
, 17
–28
(1994
).13.
Milnor
, J.
, “Problems of present-day mathematics (Sec. XV. Differential Geometry)
,” Proc. Symp. Pure Math.
28
, 54
–57
(1973
).14.
15.
Rahmani
, S.
, “Métriques de Lorentz sur les groupes de Lie unimodulaires de dimension trois
,” J. Geom. Phys.
9
, 295
–302
(1992
).© 2007 American Institute of Physics.
2007
American Institute of Physics
You do not currently have access to this content.