Dual-helicity eigenspinors of the charge conjugation operator [eigenspinoren des ladungskonjugationsoperators (ELKO) spinor fields] belong—together with Majorana spinor fields—to a wider class of spinor fields, the so-called flagpole spinor fields, corresponding to the class (5), according to Lounesto spinor field classification based on the relations and values taken by their associated bilinear covariants. There exists only six such disjoint classes: the first three corresponding to Dirac spinor fields, and the other three, respectively, corresponding to flagpole, flag-dipole, and Weyl spinor fields. This paper is devoted to investigate and provide the necessary and sufficient conditions to map Dirac spinor fields to ELKO, in order to naturally extend the standard model to spinor fields possessing mass dimension 1. As ELKO is a prime candidate to describe dark matter, an adequate and necessary formalism is introduced and developed here, to better understand the algebraic, geometric, and physical properties of ELKO spinor fields, and their underlying relationship to Dirac spinor fields.

1.
D. V.
Ahluwalia-Khalilova
and
D.
Grumiller
,
J. Cosmol. Astropart. Phys.
07
,
012
(
2005
)
2.
D. V.
Ahluwalia-Khalilova
and
D.
Grumiller
,
Phys. Rev. D
72
,
067701
(
2005
)
3.
D. V.
Ahluwalia-Khalilova
, “
Extended set of Majorana spinors, a new dispersion relation, and a preferred frame
,” e-print arXiv:hep-ph∕0305336v1.
4.
J. A.
McLennan
,
Phys. Rev.
106
,
821
(
1957
).
5.
6.
D. V.
Ahluwalia-Khalilova
,
Int. J. Mod. Phys. D
15
,
2267
(
2006
)
7.
A.
Anisimov
, Majorana Dark Matter,
Sixth International Workshop on the Identification of Dark Matter
,
Rhodes, Greece
, September
2006
8.
P.
Frampton
,
S.
Glashow
, and
T.
Yanagida
,
Phys. Lett. B
532
,
15
(
2002
)
9.
M. J.
Jee
 et al.,
Astrophys. J.
661
,
728
(
2007
),
10.
R. A.
Mosna
and
W. A.
Rodrigues
,Jr.
,
J. Math. Phys.
45
,
2945
(
2004
)
11.
W. A.
Rodrigues
,Jr.
,
J. Math. Phys.
45
,
2908
(
2004
)
12.
V.
Figueiredo
,
E.
Capelas de Oliveira
, and
W. A.
Rodrigues
, Jr.
,
Int. J. Theor. Phys.
29
,
371
(
1990
).
13.
D.
Hestenes
,
J. Math. Phys.
8
,
798
(
1967
).
14.
D.
Hestenes
and
G.
Sobczyk
,
Clifford Algebra to Geometric Calculus: A Unified Language for Mathematics and Physics
(
Reidel
,
Dordrecht
,
1984
).
15.
A.
Crumeyrolle
,
Orthogonal and Symplectic Clifford Algebras: Spinor Structures
(
Kluwer
,
Dordrecht
,
1990
).
16.
I. M.
Benn
and
R. W.
Tucker
,
An Introduction to Spinors and Geometry with Applications in Physics
(
Adam Hilger
,
Bristol
,
1987
).
17.
E.
Cartan
,
The Theory of Spinors
, (
Dover
,
New York
,
1966
).
18.
C.
Chevalley
,
The Algebraic Theory of Spinors
(
Columbia University Press
,
New York
,
1954
).
19.
M.
Riesz
,
Clifford Numbers and Spinors
(
University of Maryland Press
,
College Park, MD
,
1958
).
20.
P.
Lounesto
, in
Gravitation: the Spacetime Structure
,
Proceedings of the Eighth Latin American Symposium on Relativity and Gravitation
, Águas de Lindóia,
Brazil
, 25–30 July 1993, edited by
P.
Letelier
and
W. A.
Rodrigues
, Jr.
(
World-Scientific
,
London
,
1993
).
21.
P.
Lounesto
,
Clifford Algebras and Spinors
2nd ed. (
Cambridge University Press
,
Cambridge
,
2002
), pp.
152
173
.
22.
R.
da Rocha
and
W. A.
Rodrigues
,Jr.
,
Mod. Phys. Lett. A
21
,
65
(
2006
)
23.
C. G.
Boehmer
, “
The Einstein-Elko system—Can dark matter drive inflation?
,” e-print arXiv:gr-qc∕0701087v1.
26.
J. M.
Nester
and
R. S.
Tung
,
Gen. Relativ. Gravit.
27
,
115
(
1995
)
27.
I.
Bars
and
S. W.
MacDowell
,
Gen. Relativ. Gravit.
10
,
205
(
1979
).
28.
R.
da Rocha
and
J. G.
Pereira
, “
The quadratic spinor Lagrangian, axial torsion current, and generalizations
,”
Int. J. Mod. Phys. D
D16
,
1653
(
2007
).
29.
D. V.
Ahluwalia-Khalilova
,
Int. J. Mod. Phys. A
11
,
1855
(
1996
)
30.
R.
Penrose
,
J. Math. Phys.
8
,
345
(
1967
).
31.
R.
Penrose
and
W.
Rindler
,
Spinors and Spacetime Vol. 2: Spinor and Twistor Methods in Spacetime Geometry
(
Cambridge University Press
,
Cambridge
,
1986
).
32.
R.
Penrose
,
Int. J. Theor. Phys.
1
,
61
(
1968
).
33.
R.
da Rocha
and
J.
Vaz
,Jr.
,
Proceedings of Science WC2004
,
2004
34.
R.
da Rocha
and
J.
Vaz
, Jr.
, “
Revisiting Clifford algebras and spinors II: Weyl spinors in Cl(3,0) and Cl(0,3) and the Dirac equation
,” e-print arXiv:math-ph∕0412075v1.
35.
C.
Doran
,
A.
Lasenby
, and
S.
Gull
,
Found. Phys.
23
,
1239
(
1993
).
36.
A.
Bette
,
Int. J. Geom. Methods Mod. Phys.
2
,
265
(
2005
)
37.
A.
Bette
,
Int. J. Theor. Phys.
40
,
377
(
2001
).
38.
G.
Esposito
,
Int. J. Geom. Methods Mod. Phys.
2
,
675
(
2005
)
39.
W. A.
Rodrigues
,Jr.
,
R.
da Rocha
, and
J.
Vaz
,Jr.
,
Int. J. Geom. Methods Mod. Phys.
2
,
305
(
2005
)
40.
W. A.
Rodrigues
, Jr.
and
E.
Capelas de Oliveira
,
The Many Faces of Maxwell, Dirac and Einstein Equations. A Clifford Bundle Approach
,
Lecture Notes in Physics
Vol.
722
(
Springer
,
New York
,
2007
).
41.
H. B.
Lawson
, Jr.
and
M. L.
Michelson
,
Spin Geometry
(
Princeton University Press
,
Princeton, NJ
,
1989
).
42.
Y.
Choquet-Bruhat
,
C.
DeWitt-Morette
, and
M.
Dillard-Bleick
,
Analysis, Manifolds and Physics
, rev. ed. (
North-Holland
,
Amsterdam
,
1977
).
43.
J. P.
Crawford
,
J. Math. Phys.
26
,
1429
(
1985
).
44.
P. R.
Holland
,
Found. Phys.
16
,
708
(
1986
).
45.
P. R.
Holland
,
Minimal Ideals and Clifford Algebras in the Phase Space Representation of spin-1∕2 Fields
,
Proceedings of the Workshop on Clifford Algebras and their Applications in Mathematical Physics
,
Canterbury
,
1985
, edited by
J. S. R.
Chisholm
and
A. K.
Common
(
Reidel
,
Dordrecht
,
1986
), pp.
273
283
.
46.
M. R.
Francis
and
A.
Kosowsky
,
Ann. Phys. (N.Y.)
317
,
383
(
2005
)
47.
R. A.
Mosna
and
J.
Vaz
,Jr.
,
Phys. Lett. A
315
,
418
(
2003
)
48.
R.
Plaga
, “
A demonstration that the observed neutrinos are not Majorana particles
,” e-print arXiv:hep-ph∕9610545v3;
The non-equivalence of Weyl and Majorana neutrinos with standard-model gauge interactions
,” e-print arXiv:hep-ph∕0108052v1.
You do not currently have access to this content.