Finsler and Lagrange spaces can be equivalently represented as almost Kähler manifolds endowed with a metric compatible canonical distinguished connection structure generalizing the Levi-Civita connection. The goal of this paper is to perform a natural Fedosov-type deformation quantization of such geometries. All constructions are canonically derived for regular Lagrangians and/or fundamental Finsler functions on tangent bundles.

1.
S.
Goldberg
,
Proc. Am. Math. Soc.
21
,
96
(
1969
).
2.
A.
Gray
,
Tohoku Math. J.
28
,
233
(
1976
).
3.

For coordinates uα=(xi,ya) on TM, when indices i,j,,a,,b, run values 1,2,,n, we get also coordinates on TM˜ if not all fiber coordinates ya vanish; in brief, we shall write u=(x,y).

4.
M.
Matsumoto
,
Foundations of Finsler Geometry and Special Finsler Spaces
(
Kaisisha
,
Shigaken, Japan
,
1986
).
5.
6.
R.
Miron
and
M.
Anastasiei
,
Vector Bundles and Lagrange Spaces with Applications to Relativity
(
Geometry Balkan
,
Bukharest
,
1997
).
7.
R.
Miron
and
M.
Anastasiei
,
The Geometry of Lagrange Spaces: Theory and Applications
(
Kluwer Academic
,
Dordrecht
,
1994
), FTPH No. 59.
8.
R.
Miron
and
Gh.
Atanasiu
, Seminarul de Mecanicǎ (unpublished), Vol.
40
, p.
1
;
Revue Roumaine de Mathematiques Pures et Appliquee,
1996
, Vol.
41
, pp.
3
, 4, 205, 237, and 251.
9.
R.
Miron
and
Gh.
Atanasiu
,
Lagrange Geometry, Finsler Spaces and Nois Applied in Biology and Physics
,
Mathematical and Computer Modelling
Vol.
20
(
Pergamon
,
Oxford
,
1994
), p.
41
.
10.
R.
Miron
,
The Geometry of Higher-Order Lagrange Spaces, Application to Mechanics and Physics
(
Kluwer Academic
,
Boston
,
1997
), FTPH No. 82.
11.
R.
Miron
,
The Geometry of Higher-Order Finsler Spaces
(
Hadronic
,
Palm Harbor
,
1998
).
12.
I.
Bucataru
and
R.
Miron
, e-print arXiv:0705.3689.
13.
S.
Vacaru
, e-print arXiv:0707.1524.
14.
V.
Oproiu
,
Rendiconti Seminario Facoltà Scienze Università Cagliari
55
,
1
(
1985
).
15.
V.
Oproiu
, An. St. Univ. “Al. I. Cuza” Iaşi, Romania, XXXIII, s. Ia. f. 1 (
1987
).
16.
V.
Oproiu
,
Math. J. Toyama Univ.
22
,
1
(
1999
).
17.
B.
Fedosov
,
Funkc. Anal. Priloz.
25
,
1984
(
1990
).
18.
B.
Fedosov
,
J. Diff. Geom.
40
,
213
(
1994
).
19.
B.
Fedosov
,
Deformation Quantization and Index Theory
(
Akademie
,
Berlin
,
1996
).
20.
I.
Gelfand
,
V.
Retakh
, and
M.
Shubin
,
Adv. Math.
136
,
104
(
1998
).
21.
A.
Karabegov
and
M.
Schlichenmaier
,
Lett. Math. Phys.
57
,
135
(
2001
).
22.
F.
Etayo
,
R.
Santamaría
, and
S.
Vacaru
,
J. Math. Phys.
46
,
032901
(
2005
).
23.
S.
Vacaru
, e-print arXiv:0707.1526.
24.
S.
Vacaru
, e-print arXiv:0707.1667.
25.

Proofs consist of straightforward computations.

26.

For simplicity, in this work, we shall omit left labels L in formulas if it will not result in ambiguities; we shall use boldface indices for spaces and objects provided or adapted to an N-connection structure.

27.

We contract horizontal and vertical indices following the rule i=1 is a=n+1; i=2 is a=n+2;; i=n is a=n+n.

28.
E.
Cartan
,
Les Espaces de Finsler
(
Hermann
,
Paris
,
1935
).
29.
F.
Bayen
,
M.
Flato
,
C.
Fronsdal
,
A.
Lichnerowicz
, and
D.
Sternhemer
,
Lett. Math. Phys.
1
,
521
(
1977
).
30.
F.
Bayen
,
M.
Flato
,
C.
Fronsdal
,
A.
Lichnerowicz
, and
D.
Sternhemer
,
Ann. Phys. (N.Y.)
111
,
61
(
1978
).
31.
F.
Bayen
,
M.
Flato
,
C.
Fronsdal
,
A.
Lichnerowicz
, and
D.
Sternhemer
,
Ann. Phys. (N.Y.)
111
,
111
(
1978
).
32.
P.
Deligne
and
P.
Lecompte
,
Selecta Math., New Ser.
1
,
667
(
1995
).
33.
R.
Nest
and
B.
Tsygan
,
Adv. Math.
11
,
223
(
1995
).
34.
35.
M.
Bordermann
,
E.
Meinrenken
, and
M.
Schlichenmaier
,
Commun. Math. Phys.
165
,
281
(
1994
).
36.
V.
Dolgushev
,
S.
Lyakhovich
, and
A.
Sharapov
,
Nucl. Phys. B
606
,
647
(
2001
).
37.
A.
Karabegov
,
Commun. Math. Phys.
180
,
745
(
1996
).
38.
A.
Karabegov
,
Lett. Math. Phys.
43
,
347
(
1998
).
39.
40.
M.
Kontsevich
,
Lett. Math. Phys.
48
,
35
(
1999
).
41.
K.
Yano
,
Differential Geometry on Complex and Almost Complex Spaces
(
Pergamon
,
New York
,
1965
).
42.

We chose a definition of this tensor as in Ref. 6 which is with minus sign compared to the definition used in Ref. 21; we also use a different letter for this tensor, like for the N-connection curvature, because in our case, the symbol N is used for N connections.

43.

This formula is a nonholonomic analog, for our conventions, with inverse sign, of formula (2.9) from Ref. 21.

44.
S.
Vacaru
,
J. Math. Phys.
46
,
042503
(
2005
).
45.
S.
Vacaru
,
J. Math. Phys.
47
,
093504
(
2006
).
46.
S.
Vacaru
,
Nucl. Phys. B
434
,
590
(
1997
).
47.
S.
Vacaru
,
J. High Energy Phys.
09
,
011
(
1998
).
48.

It should be noted that formulas (20)–(24) can be written for any metric g and metric compatible d connection D, Dg=0, on TM, provided with arbitrary N connection N (we have to omit hats and labels L). It is a more sophisticated problem to define such constructions for Finsler geometries with the so-called Chern connection which are metric noncompatible (Ref. 51). For applications in standard models of physics, we chose the variants of Lagrange-Finsler spaces defined by metric compatible d connections, see discussion in Ref. 13.

49.
M.
Bordemann
and
St.
Waldmann
,
Lett. Math. Phys.
41
,
243
(
1997
).
50.
S.
Vacaru
,
P.
Stavrinos
,
E.
Gaburov
, and
D.
Gonţa
,
Clifford and Riemann-Finsler Structures in Geometric Mechanics and Gravity
,
Selected Works, Differential Geometry—Dynamical Systems Monograph 7
(
Geometry Balkan Press
,
Bucharest
,
2006
) (www.mathem.pub.ro/dgds/mono/va-t.pdf and gr-qc/0508023).
51.
D.
Bao
,
S.-S.
Chern
, and
Z.
Shen
,
An Introduction to Riemann-Finsler Geometry
,
Graduate Texts in Mathematics
Vol.
200
(
Springer-Verlag
,
Berlin
,
2000
).
You do not currently have access to this content.