A classical (or quantum) second order superintegrable system is an integrable n-dimensional Hamiltonian system with potential that admits 2n1 functionally independent second order constants of the motion polynomial in the momenta, the maximum possible. Such systems have remarkable properties: multi-integrability and multiseparability, an algebra of higher order symmetries whose representation theory yields spectral information about the Schrödinger operator, deep connections with special functions, and with quasiexactly solvable systems. Here, we announce a complete classification of nondegenerate (i.e., four-parameter) potentials for complex Euclidean 3-space. We characterize the possible superintegrable systems as points on an algebraic variety in ten variables subject to six quadratic polynomial constraints. The Euclidean group acts on the variety such that two points determine the same superintegrable system if and only if they lie on the same leaf of the foliation. There are exactly ten nondegenerate potentials.

1.
S.
Wojciechowski
,
Phys. Lett.
95A
,
279
(
1983
).
N. W.
Evans
,
J. Math. Phys.
32
,
3369
(
1991
).
3.
4.
J.
Friš
,
V.
Mandrosov
,
Ya. A.
Smorodinsky
,
M.
Uhlír
, and
P.
Winternitz
,
Phys. Lett.
16
,
354
(
1965
).
5.
J.
Friš
,
Ya. A.
Smorodinskii
,
M.
Uhlír
, and
P.
Winternitz
,
Sov. J. Nucl. Phys.
4
,
444
(
1967
).
6.
A. A.
Makarov
,
Ya. A.
Smorodinsky
,
Kh.
Valiev
, and
P.
Winternitz
,
Nuovo Cimento A
52
,
1061
(
1967
).
7.
F.
Calogero
,
J. Math. Phys.
10
,
2191
(
1969
).
8.
A.
Cisneros
and
H. V.
McIntosh
,
J. Math. Phys.
10
,
277
(
1969
).
9.
E. G.
Kalnins
,
J. M.
Kress
, and
W.
Miller
, Jr.
,
J. Math. Phys.
47
,
093501
(
2006
).
10.
L. G.
Mardoyan
,
G. S.
Pogosyan
,
A. N.
Sissakian
, and
V. M.
Ter-Antonyan
,
Nuovo Cimento Soc. Ital. Fis., B
88
,
43
(
1985
);
L. G.
Mardoyan
,
G. S.
Pogosyan
,
A. N.
Sissakian
, and
V. M.
Ter-Antonyan
,
Theor. Math. Phys.
61
,
1021
(
1984
);
L. G.
Mardoyan
,
G. S.
Pogosyan
,
A. N.
Sissakian
, and
V. M.
Ter-Antonyan
,
J. Phys. A
18
,
455
(
1985
).
11.
Ya. A.
Granovsky
,
A. S.
Zhedanov
, and
I. M.
Lutzenko
,
J. Phys. A
24
,
3887
(
1991
).
12.
D.
Bonatos
,
C.
Daskaloyannis
, and
K.
Kokkotas
,
Phys. Rev. A
50
,
3700
(
1994
).
13.
C.
Grosche
,
G. S.
Pogosyan
, and
A. N.
Sissakian
,
Fortschr. Phys.
43
,
453
(
1995
).
14.
E. G.
Kalnins
,
J. M.
Kress
,
W.
Miller
, Jr.
, and
G. S.
Pogosyan
,
J. Phys. A
34
,
4705
(
2001
).
15.
E. G.
Kalnins
,
J. M.
Kress
, and
P.
Winternitz
,
J. Math. Phys.
43
,
970
(
2002
).
16.
E. G.
Kalnins
,
J. M.
Kress
,
W.
Miller
, Jr.
, and
P.
Winternitz
,
J. Math. Phys.
44
,
5811
(
2003
).
17.
M. F.
Rañada
,
J. Math. Phys.
38
,
4165
(
1997
).
18.
E. G.
Kalnins
,
W.
Miller
, Jr.
,
G. C.
Williams
, and
G. S.
Pogosyan
,
J. Phys. A
35
,
4655
(
2002
).
19.
A.
Ballesteros
,
A.
Enciso
,
F. J.
Herranz
, and
O.
Ragnisco
, e-print arXiv:math-ph/0612080.
20.
E. G.
Kalnins
,
J. M.
Kress
, and
W.
Miller
, Jr.
,
J. Math. Phys.
46
,
103507
(
2005
).
21.
E. G.
Kalnins
,
J. M.
Kress
, and
W.
Miller
, Jr.
,
Proceedings volumes of the IMA program on Symmetries and Overdetermined Systems of Partial Differential Equations
,
2007
(unpublished).
22.
E. G.
Kalnins
,
J. M.
Kress
, and
W.
Miller
, Jr.
,
J. Math. Phys.
47
,
043514
(
2006
).
23.
E. G.
Kalnins
,
Separation of Variables for Riemannian Spaces of Constant Curvature
,
Pitman, Monographs and Surveys in Pure and Applied Mathematics
Vol.
28
(
Longman
,
Essex
,
1986
), pp.
184
208
.
24.
W.
Miller
, Jr.
,
Symmetries and Non-linear Phenomena
(
World Scientific
,
Singapore
,
1988
), pp.
188
221
.
25.
E. G.
Kalnins
,
J. M.
Kress
,
W.
Miller
, Jr.
, and
G. S.
Pogosyan
, “
Non degenerate superintegrable systems in n dimensional complex Euclidean spaces
,”
Phys. At. Nucl.
(to be published).
26.
E. G.
Kalnins
,
J. M.
Kress
, and
W.
Miller
, Jr.
,
J. Math. Phys.
46
,
053509
(
2005
).
27.
M.
Bôcher
,
Über die Riehenentwickelungen der Potentialtheory
(
Teubner
,
Leipzig
,
1894
).
28.
E. G.
Kalnins
,
W.
Miller
, Jr.
, and
G. K.
Reid
,
Proc. R. Soc. London, Ser. A
394
,
183
(
1984
).
29.
E. G.
Kalnins
,
J. M.
Kress
, and
W.
Miller
, Jr.
,
J. Phys. A
40
,
5875
2007
.
30.
E. G.
Kalnins
,
J. M.
Kress
, and
W. Jr.
Miller
,
,
J. Math. Phys.
46
,
053510
(
2005
).
31.
E. G.
Kalnins
,
W.
Miller
, Jr.
, and
G. S.
Pogosyan
,
J. Phys. A
33
,
4105
(
2000
).
32.
E. G.
Kalnins
,
W.
Miller
, Jr.
, and
G. S.
Pogosyan
,
J. Phys. A
33
,
6791
(
2000
).
33.
C.
Daskaloyannis
and
K.
Ypsilantis
,
J. Math. Phys.
47
,
042904
(
2006
).
34.
F.
Calogero
,
J. Math. Phys.
12
,
419
(
1971
).
35.
S.
Rauch-Wojciechowski
and
C.
Waksjö
,
J. Nonlinear Math. Phys.
12
,
535
(
2005
).
36.
J. T.
Horwood
,
R. G.
McLenaghan
, and
R. G.
Smirnov
,
Commun. Math. Phys.
259
,
679
(
2005
).
You do not currently have access to this content.