The decomposition of the spinor bundle of the spin Grassmann manifolds Gm,n=SO(m+n)SO(m)×SO(n) into irreducible representations of so(m)so(n) is presented. A universal construction is developed and the general statement is proven for G2k+1,3, G2k,4, and G2k+1,5 for all k. The decomposition is used to discuss properties of the spectrum and the eigenspaces of the Dirac operator.

1.
Besse
,
A. L.
,
Einstein Manifolds
,
Ergebnisse der Mathematik und ihrer Grenzgebiete
Vol.
10
(
Springer-Verlag
,
Berlin
1987
).
2.
Cahen
,
M.
and
Gutt
,
S.
,
Proceedings of the Workshop on Clifford Algebra, Clifford Analysis and Their Applications in Mathematical Physics, Ghent, 1988
(unpublished), Vol.
62
, pp.
209
242
.
3.
Camporesi
,
R.
and
Pedon
,
E.
, “
The continuous spectrum of the Dirac operator on noncompact Riemannian symmetric spaces of rank one
,”
Proc. Am. Math. Soc.
130
,
507
516
(
2002
).
4.
Castilho Alcarás
,
J. A.
,
Tambergs
,
J.
,
Krasta
,
T.
,
Ruža
,
J.
, and
Katkevičius
,
O.
, “
Plethysms and interacting boson models
,”
J. Math. Phys.
44
,
5296
5319
(
2003
).
5.
El Samra
,
N.
and
King
,
R. C.
, “
Dimensions of irreducible representations of the classical Lie groups
,”
J. Phys. A
12
,
2317
2328
(
1979
).
6.
Fegan
,
H. D.
and
Steer
,
B.
, “
First order differential operators on a locally symmetric space
,”
Pac. J. Math.
194
,
83
96
(
2000
).
7.
Friedrich
,
T.
and
Ivanov
,
S.
, “
Parallel spinors and connections with skew-symmetric torsion in string theory
,”
Asian J. Math.
6
,
303
335
(
2002
).
8.
Fulton
,
W.
and
Harris
,
J.
,
Representation Theory
,
Graduate Texts in Mathematics
Vol.
129
(
Springer-Verlag
,
New York
,
1991
).
9.
Goette
,
S.
, Equivariant η-Invariants of Homogeneous Spaces (Äquivariante η-Invarianten Homogener Räume) (German) (
Shaker
,
Aachen
,
1997
).
10.
Goette
,
S.
and
Semmelmann
,
U.
, “
The point spectrum of the Dirac operator on noncompact symmetric spaces
,”
Proc. Am. Math. Soc.
130
,
915
923
(
2002
).
11.
Helgason
,
S.
,
Differential Geometry, Lie Groups, and Symmetric Spaces
,
Graduate Studies in Mathematics
Vol.
34
(
American Mathematical Society
,
Providence, RI
,
2001
) (corrected reprint of the 1978 original).
12.
Howe
,
R.
,
Tan
,
E.-C.
, and
Willenbring
,
J. F.
, “
Stable branching rules for classical symmetric pairs
,”
Trans. Am. Math. Soc.
357
,
1601
1626
(
2005
).
13.
Humphreys
,
J. E.
,
Introduction to Lie Algebras and Representation Theory
,
Graduate Texts in Mathematics
Vol.
9
, 3rd ed. (
Springer-Verlag
,
Berlin
,
1980
), p.
171
.
14.
King
,
R. C.
and
Wybourne
,
B. G.
, “
Some noteworthy spin plethysms
,”
J. Phys. A
15
,
1137
1141
(
1982
).
15.
Koike
,
K.
and
Terada
,
I.
, “
On the decomposition of tensor products of representations of the classical groups: by means of the universal character
,”
Adv. Math.
74
,
57
86
(
1989
).
16.
Koike
,
K.
and
Terada
,
I.
, “
Young-diagrammatic methods for the representation theory of the classical groups of type Bn,Cn,Dn
,”
J. Algebra
107
,
466
511
(
1987
).
17.
Koike
,
K.
and
Terada
,
I.
, “
Young diagrammatic methods for the restriction of representations of complex classical groups to reductive groups of maximal rank
,”
Adv. Math.
79
,
104
135
(
1990
).
18.
Littlewood
,
D. E.
,
The Theory of Group Characters and Matrix Representations of Groups
(
Oxford University Press
,
New York
,
1940
).
19.
Lyakhovskiĭ
,
V. D.
and
Mudrov
,
A. I.
, “
Spinor structures on homogeneous spaces
,”
Teor. Mat. Fiz.
92
,
13
23
(
1992
).
20.
Macdonald
,
I. G.
,
Symmetric Functions and Hall Polynomials
, 2nd ed. (
Oxford Science
,
Oxford
,
1998
), p.
475
.
21.
McKay
,
W. G.
and
Patera
,
J.
,
Tables of Dimensions, Indices, and Branching Rules for Representations of Simple Lie Algebras, Lecture Notes in Pure and Applied Mathematics
Vol.
69
(
Dekker
,
New York
,
1981
).
22.
Milhorat
,
J.-L.
, “
A formula for the first eigenvalue of the Dirac operator on compact spin symmetric spaces
,”
J. Math. Phys.
47
,
043503
(
2006
).
23.
Milhorat
,
J.-L.
, “
Spectrum of the Dirac operator on Gr2(Cm+2)
,”
J. Math. Phys.
39
,
594
609
(
1998
).
24.
Milhorat
,
J.-L.
, “
The first eigenvalue of the Dirac operator on compact spin symmetric spaces
,”
Commun. Math. Phys.
259
,
71
78
(
2005
).
25.
Parthasarathy
,
R.
, “
Dirac operator and the discrete series
,”
Ann. Math.
96
,
1
30
(
1972
).
26.
Seeger
,
L.
, “
The spectrum of the Dirac operator on G2SO(4)
,”
Ann. Global Anal. Geom.
17
,
385
396
(
1999
).
27.
Strese
,
H.
, “
Über den Dirac-Operator auf Grassmann-Mannigfaltigkeiten
,”
Math. Nachr.
98
,
53
59
(
1980
).
28.
Tsukamoto
,
C.
, “
Spectra of Laplace-Beltrami operators on SO(n+2)SO(2)×SO(n) and Sp(n+1)Sp(1)×Sp(n)
,”
Osaka J. Math.
18
,
407
426
(
1981
).
29.
Vasilevich
,
D. V.
and
Lyakhovskiĭ
,
V. D.
, “
The method of special imbeddings for grand unification models
,”
Teor. Mat. Fiz.
66
,
350
359
(
1986
).
30.
Wolf
,
J. A.
, “
Complex homogeneous contact manifolds and quaternionic symmetric spaces
,”
J. Math. Mech.
14
,
1033
1047
(
1965
).
31.
Wybourne
,
B. G.
,
Symmetry Principles and Atomic Spectroscopy
(
Wiley-Interscience
,
New York
,
1970
).
You do not currently have access to this content.