The decomposition of the spinor bundle of the spin Grassmann manifolds into irreducible representations of is presented. A universal construction is developed and the general statement is proven for , , and for all . The decomposition is used to discuss properties of the spectrum and the eigenspaces of the Dirac operator.
REFERENCES
1.
Besse
, A. L.
, Einstein Manifolds
, Ergebnisse der Mathematik und ihrer Grenzgebiete
Vol. 10
(Springer-Verlag
, Berlin
1987
).2.
Cahen
, M.
and Gutt
, S.
, Proceedings of the Workshop on Clifford Algebra, Clifford Analysis and Their Applications in Mathematical Physics, Ghent, 1988
(unpublished), Vol. 62
, pp. 209
–242
.3.
Camporesi
, R.
and Pedon
, E.
, “The continuous spectrum of the Dirac operator on noncompact Riemannian symmetric spaces of rank one
,” Proc. Am. Math. Soc.
130
, 507
–516
(2002
).4.
Castilho Alcarás
, J. A.
, Tambergs
, J.
, Krasta
, T.
, Ruža
, J.
, and Katkevičius
, O.
, “Plethysms and interacting boson models
,” J. Math. Phys.
44
, 5296
–5319
(2003
).5.
El Samra
, N.
and King
, R. C.
, “Dimensions of irreducible representations of the classical Lie groups
,” J. Phys. A
12
, 2317
–2328
(1979
).6.
Fegan
, H. D.
and Steer
, B.
, “First order differential operators on a locally symmetric space
,” Pac. J. Math.
194
, 83
–96
(2000
).7.
Friedrich
, T.
and Ivanov
, S.
, “Parallel spinors and connections with skew-symmetric torsion in string theory
,” Asian J. Math.
6
, 303
–335
(2002
).8.
Fulton
, W.
and Harris
, J.
, Representation Theory
, Graduate Texts in Mathematics
Vol. 129
(Springer-Verlag
, New York
, 1991
).9.
Goette
, S.
, Equivariant -Invariants of Homogeneous Spaces (Äquivariante -Invarianten Homogener Räume) (German) (Shaker
, Aachen
, 1997
).10.
Goette
, S.
and Semmelmann
, U.
, “The point spectrum of the Dirac operator on noncompact symmetric spaces
,” Proc. Am. Math. Soc.
130
, 915
–923
(2002
).11.
Helgason
, S.
, Differential Geometry, Lie Groups, and Symmetric Spaces
, Graduate Studies in Mathematics
Vol. 34
(American Mathematical Society
, Providence, RI
, 2001
) (corrected reprint of the 1978 original).12.
Howe
, R.
, Tan
, E.-C.
, and Willenbring
, J. F.
, “Stable branching rules for classical symmetric pairs
,” Trans. Am. Math. Soc.
357
, 1601
–1626
(2005
).13.
Humphreys
, J. E.
, Introduction to Lie Algebras and Representation Theory
, Graduate Texts in Mathematics
Vol. 9
, 3rd ed. (Springer-Verlag
, Berlin
, 1980
), p. 171
.14.
King
, R. C.
and Wybourne
, B. G.
, “Some noteworthy spin plethysms
,” J. Phys. A
15
, 1137
–1141
(1982
).15.
Koike
, K.
and Terada
, I.
, “On the decomposition of tensor products of representations of the classical groups: by means of the universal character
,” Adv. Math.
74
, 57
–86
(1989
).16.
Koike
, K.
and Terada
, I.
, “Young-diagrammatic methods for the representation theory of the classical groups of type
,” J. Algebra
107
, 466
–511
(1987
).17.
Koike
, K.
and Terada
, I.
, “Young diagrammatic methods for the restriction of representations of complex classical groups to reductive groups of maximal rank
,” Adv. Math.
79
, 104
–135
(1990
).18.
Littlewood
, D. E.
, The Theory of Group Characters and Matrix Representations of Groups
(Oxford University Press
, New York
, 1940
).19.
Lyakhovskiĭ
, V. D.
and Mudrov
, A. I.
, “Spinor structures on homogeneous spaces
,” Teor. Mat. Fiz.
92
, 13
–23
(1992
).20.
Macdonald
, I. G.
, Symmetric Functions and Hall Polynomials
, 2nd ed. (Oxford Science
, Oxford
, 1998
), p. 475
.21.
McKay
, W. G.
and Patera
, J.
, Tables of Dimensions, Indices, and Branching Rules for Representations of Simple Lie Algebras, Lecture Notes in Pure and Applied Mathematics
Vol. 69
(Dekker
, New York
, 1981
).22.
Milhorat
, J.-L.
, “A formula for the first eigenvalue of the Dirac operator on compact spin symmetric spaces
,” J. Math. Phys.
47
, 043503
(2006
).23.
Milhorat
, J.-L.
, “Spectrum of the Dirac operator on
,” J. Math. Phys.
39
, 594
–609
(1998
).24.
Milhorat
, J.-L.
, “The first eigenvalue of the Dirac operator on compact spin symmetric spaces
,” Commun. Math. Phys.
259
, 71
–78
(2005
).25.
Parthasarathy
, R.
, “Dirac operator and the discrete series
,” Ann. Math.
96
, 1
–30
(1972
).26.
Seeger
, L.
, “The spectrum of the Dirac operator on
,” Ann. Global Anal. Geom.
17
, 385
–396
(1999
).27.
Strese
, H.
, “Über den Dirac-Operator auf Grassmann-Mannigfaltigkeiten
,” Math. Nachr.
98
, 53
–59
(1980
).28.
Tsukamoto
, C.
, “Spectra of Laplace-Beltrami operators on and
,” Osaka J. Math.
18
, 407
–426
(1981
).29.
Vasilevich
, D. V.
and Lyakhovskiĭ
, V. D.
, “The method of special imbeddings for grand unification models
,” Teor. Mat. Fiz.
66
, 350
–359
(1986
).30.
Wolf
, J. A.
, “Complex homogeneous contact manifolds and quaternionic symmetric spaces
,” J. Math. Mech.
14
, 1033
–1047
(1965
).31.
Wybourne
, B. G.
, Symmetry Principles and Atomic Spectroscopy
(Wiley-Interscience
, New York
, 1970
).© 2007 American Institute of Physics.
2007
American Institute of Physics
You do not currently have access to this content.