The q-sum xqyx+y+(1q)xy(x1y=x+y) and the q-product xqy[x1q+y1q1]1(1q)(x1y=xy) emerge naturally within nonextensive statistical mechanics. We show here how they lead to two-parameter (namely, q and q) generalizations of the logarithmic and exponential functions (noted, respectively, lnq,qx and eq,qx), as well as of the Boltzmann-Gibbs-Shannon entropy SBGSki=1Wpilnpi (noted Sq,q). The remarkable properties of the (q,q)-generalized logarithmic function make the entropic form Sq,qki=1Wpilnq,q(1pi) satisfy, for large regions of (q,q), important properties such as expansibility, concavity, and Lesche stability, but not necessarily composability.

1.
Nonextensive Entropy—Interdisciplinary Applications
, edited by
M.
Gell-Mann
and
C.
Tsallis
(
Oxford University Press
,
New York
,
2004
).
2.
Nonextensive Statistical Mechanics: New Trends, New Perspectives
, edited by
J. P.
Boon
and
C.
Tsallis
(
Europhysics News
, Volume
36
,
2005
), pp.
183
231
.
3.
C.
Tsallis
,
J. Stat. Phys.
52
,
479
(
1988
);
for a regularly updated bibliography, see http://tsallis.cat.cbpf.br/biblio.htm
4.
E. M. F.
Curado
and
C.
Tsallis
,
J. Phys. A
L69
,
24
(
1991
);
E. M. F.
Curado
and
C.
Tsallis
,
J. Phys. A
24
,
3187
(E) (
1991
);
E. M. F.
Curado
and
C.
Tsallis
,
J. Phys. A
25
,
1019
(E) (
1992
).
5.
C.
Tsallis
,
R. S.
Mendes
, and
A. R.
Plastino
,
Physica A
261
,
534
(
1998
).
6.
C.
Tsallis
,
Quim. Nova
17
,
468
(
1994
).
8.
G.
Kaniadakis
,
Phys. Rev. E
66
,
056125
(
2002
).
10.
L.
Nivanen
,
A.
Le Mehaute
, and
Q. A.
Wang
,
Rep. Math. Phys.
52
,
437
(
2003
).
11.
E. M. F.
Curado
and
F. D.
Nobre
,
Physica A
335
,
94
(
2004
).
You do not currently have access to this content.