The -sum and the -product emerge naturally within nonextensive statistical mechanics. We show here how they lead to two-parameter (namely, and ) generalizations of the logarithmic and exponential functions (noted, respectively, and ), as well as of the Boltzmann-Gibbs-Shannon entropy (noted ). The remarkable properties of the -generalized logarithmic function make the entropic form satisfy, for large regions of , important properties such as expansibility, concavity, and Lesche stability, but not necessarily composability.
REFERENCES
1.
Nonextensive Entropy—Interdisciplinary Applications
, edited by M.
Gell-Mann
and C.
Tsallis
(Oxford University Press
, New York
, 2004
).2.
Nonextensive Statistical Mechanics: New Trends, New Perspectives
, edited by J. P.
Boon
and C.
Tsallis
(Europhysics News
, Volume 36
, 2005
), pp. 183
–231
.3.
C.
Tsallis
, J. Stat. Phys.
52
, 479
(1988
);for a regularly updated bibliography, see http://tsallis.cat.cbpf.br/biblio.htm
4.
E. M. F.
Curado
and C.
Tsallis
, J. Phys. A
24
, 3187
(E) (1991
);5.
C.
Tsallis
, R. S.
Mendes
, and A. R.
Plastino
, Physica A
261
, 534
(1998
).6.
7.
E. P.
Borges
, J. Phys. A
31
, 5281
(1998
).8.
G.
Kaniadakis
, Phys. Rev. E
66
, 056125
(2002
).9.
E. P.
Borges
, Physica A
340
, 95
(2004
).10.
L.
Nivanen
, A.
Le Mehaute
, and Q. A.
Wang
, Rep. Math. Phys.
52
, 437
(2003
).11.
E. M. F.
Curado
and F. D.
Nobre
, Physica A
335
, 94
(2004
).© 2007 American Institute of Physics.
2007
American Institute of Physics
You do not currently have access to this content.