Kähler quantization of H1(T2,R) is studied. It is shown that this theory corresponds to a fermionic σ model targeting a noncommutative space. By solving the complex-structure moduli independence conditions, the quantum background independent wave function is obtained. We study the transformation of the wave function under modular transformation. It is shown that the transformation rule is characteristic to the operator ordering. Similar results are obtained for Kähler quantization of H2(T2,R).

1.
M.
Aganagic
,
V.
Bouchard
, and
A.
Klemm
, e-print arXiv:hep-th/0607100.
2.
M.
Bershadsky
,
S.
Cecotti
,
H.
Ooguri
, and
C.
Vafa
,
Commun. Math. Phys.
165
,
311
(
1994
);
3.
E.
Witten
, e-print arXiv:hep-th/9306122.
4.
E.
Verlinde
, e-print arXiv:hep-th/0412139;
A. A.
Gerasimov
and
S. L.
Shatashvili
,
J. High Energy Phys.
11
,
074
(
2004
);
C.
Gomez
and
S.
Montanez
,
J. High Energy Phys.
0612
,
069
(
2006
);
5.
F.
Loran
,
J. High Energy Phys.
0512
,
004
(
2005
);
6.
N.
Koblitz
,
Introduction to Elliptic Curves and Modular Forms
(
Springer-Verlag
,
New York
,
1984
).
7.
P. A. M.
Dirac
,
Can. J. Math.
2
,
129
(
1950
);
Generalized Hamiltonian Dynamics,
Proc. R. Soc. London, Ser. A
246
,
326
(
1958
);
Lectures on Quantum Mechanics
(
Yeshiva University Press
,
New York
,
1964
);
M.
Henneaux
and
C.
Teitelboim
,
Quantization of Gauge System
(
Princeton University Press
,
Princeton, New Jersey
,
1992
);
J.
Govaerts
,
Hamiltonian Quantisation and Constrained Dynamics
,
Leuven Notes in Theoretical and Mathematical Physics
(
Leuven University Press
,
Leuven
,
1991
).
You do not currently have access to this content.