The characterization of quasifree product states on CAR algebras is given. We also prove that the quasifree states on CAR algebra which saturate the strong additivity of von Neumann entropy with equality are product states.

1.
Accardi
,
L.
, “
On noncommutative Markov property
,”
Funct. Anal. Appl.
8
,
1
8
(
1975
).
2.
Accardi
,
L.
and
Frigerio
,
A.
, “
Markovian cocycles
,”
Math. Proc. R. Ir. Acad.
83
,
251
263
(
1983
).
3.
Accardi
,
L.
,
Fidaleo
,
F.
, and
Mukhamedov
,
F.
, “
Markov states and chains on the CAR algebra
,”
Infinite Dimen. Anal., Quantum Probab., Relat. Top.
(to be published).
4.
Alicki
,
R.
and
Fannes
,
M.
,
Quantum Dynamical Systems
(
Oxford University Press
,
Oxford
,
2001
).
5.
Araki
,
H.
and
Moriya
,
H.
, “
Equilibrium statistical mechanics of fermion lattice systems
,”
Rev. Math. Phys.
15
,
93
198
(
2003
).
6.
Araki
,
H.
and
Moriya
,
H.
, “
Joint extension of states of subsystems for a CAR system
,”
Commun. Math. Phys.
237
,
105
122
(
2003
).
7.
Baslev
,
E.
and
Verbeure
,
A.
, “
States on Clifford algebras
,”
Commun. Math. Phys.
7
,
55
76
(
1968
).
8.
Bratteli
,
O.
and
Robinson
,
D. W.
,
Operator Algebras and Quantum Statistical Mechanics II
(
Springer-Verlag
,
Heidelberg
,
1981
).
9.
Evans
,
D. E.
and
Kawahigashi
,
Y.
,
Quantum Symmetries on Operator Algebras
(
Oxford University Press
,
Oxford
,
1998
).
10.
Hayden
,
P.
,
Jozsa
,
R.
,
Petz
,
D.
, and
Winter
,
A.
, “
Structure of states which satisfy strong subadditivity of quantum entropy with equality
,”
Commun. Math. Phys.
246
,
359
374
(
2004
).
11.
Jenčova
,
A.
and
Petz
,
D.
, “
Sufficiency in quantum statistical inference
,”
Commun. Math. Phys.
263
,
259
276
(
2006
).
12.
Lieb
,
E. H.
and
Ruskai
,
M. B.
, “
Proof of the strong subadditivity of quantum-mechanical entropy
,”
J. Math. Phys.
14
,
1938
1941
(
1973
).
13.
Moriya
,
H.
, “
Markov property and strong additivity of von Neumann entropy for graded systems
,”
J. Math. Phys.
47
,
033510
(
2006
).
14.
Ohya
,
M.
and
Petz
,
D.
,
Quantum Entropy and Its Use
(
Springer-Verlag
,
Heidelberg
,
1993
).
15.
Petz
,
D.
, “
Monotonicity of quantum relative entropy revisited
,”
Rev. Math. Phys.
15
,
79
91
(
2003
).
16.
Petz
,
D.
, “
Sufficiency of channels over von Neumann algebras
,”
Q. J. Math.
35
,
475
483
(
1984
).
17.
Prasolov
,
V. V.
,
Problems and Theorems in Linear Algebra
(
American Mathematical Society
,
Providence
,
1994
).
18.
Shale
,
D.
and
Stinespring
,
W.
, “
States on the Clifford algebra
,”
Ann. Math.
80
,
365
381
(
1964
).
19.
Streater
,
R. F.
,
Statistical Dynamics: A Stochastical Approach to Nonequilibrium Thermodynamics
(
Imperial Colleges
,
London
,
1995
).
You do not currently have access to this content.