Based on Bohr’s ideas two families of states ωθ and ωϕ sharing the same perfect correlation of the Einstein-Podolsky-Rosen state and maximally violating Bell’s inequalities are constructed. Unlike their finite-dimensional counterpartner, these states are not unitarily equivalent. Hence they cannot be transformed into each other by physical operations of local algebras. This is a new entanglement phenomenon emerging in infinite-dimensional systems. Due to the uncertainty principle the existence of unbounded observables depends on the states ωθ and ωϕ. Therefore the manipulation of unbounded observables in quantum information processes cannot provide information for all states. Especially, the canonical unbounded observables q̂i and p̂i, i=1,2 of individual particles do not exist in the GNS representations associated with ωθ and ωϕ, and hence properties of individual particles cannot be obtained in such states.

1.
D.
Deutsch
,
Proc. R. Soc. London, Ser. A
400
,
97
(
1985
).
2.
3.
C. H.
Bennett
,
G.
Brassard
,
C.
Crépeau
,
R.
Jozsa
,
A.
Peres
, and
W. K.
Wootters
,
Phys. Rev. Lett.
70
,
1895
(
1993
).
4.
C. H.
Bennett
and
S. J.
Wiesner
,
Phys. Rev. Lett.
69
,
2881
(
1992
).
5.
S. L.
Braunstein
and
P.
van Loock
,
Rev. Mod. Phys.
77
,
513
(
2005
).
6.
T. C.
Ralph
,
Phys. Rev. A
61
,
010303
(R) (
1999
).
7.
S. L.
Braunstein
and
H. J.
Kimble
,
Phys. Rev. Lett.
80
,
869
(
1998
).
8.
S.
Lloyd
and
S. L.
Braunstein
,
Phys. Rev. Lett.
82
,
1784
(
1999
).
9.
R.
Clifton
and
H.
Halvorson
,
Phys. Rev. A
61
,
012108
(
1999
).
10.
P.
Horodecki
,
J. I.
Cirac
, and
M.
Lewenstein
, e-print arXiv:quant-ph∕0103076.
12.
P.
Hyllus
and
J.
Eisert
,
New J. Phys.
8
,
51
(
2006
).
13.
B.
Kraus
,
G.
Giedke
,
M.
Lewenstein
, and
J.
Cirac
,
Fortschr. Phys.
51
,
305
(
2003
).
14.
A. W.
Majewski
,
Open Syst. Inf. Dyn.
6
,
79
(
1999
).
15.
J.
Eisert
,
C.
Simon
, and
M.
Plenio
,
J. Phys. A
35
,
3911
(
2002
).
16.
A.
Einstein
,
B.
Podolsky
, and
N.
Rosen
,
Phys. Rev.
47
,
777
(
1935
).
17.
D.
Bohm
,
Quantum Theory
(
Prentice Hall
,
Englewood Cliffs, NJ
,
1951
).
18.
R.
Arens
and
V. S.
Varadarajan
,
J. Math. Phys.
41
,
638
(
2000
).
19.
R.
Werner
, e-print arXiv:quant-ph∕9910077.
20.
H.
Halvorson
,
Lett. Math. Phys.
53
,
321
(
2000
).
21.
H.
Halvorson
,
Stud. Hist. Philos. Mod. Phys.
35
,
45
(
2004
).
23.
M.
Keyl
,
D.
Schlingemann
, and
R.
Werner
,
Quantum Inf. Comput.
3
,
281
(
2003
).
24.
J.
Slawny
,
Commun. Math. Phys.
24
,
151
(
1972
).
25.
R. V.
Kadison
,
J. Math. Phys.
4
,
1511
(
1963
).
You do not currently have access to this content.