The notions of entanglement witnesses and separable and entangled states for a two qubit system can be visualized in three dimensions using the SLOCC equivalence classes. This visualization preserves the duality relations between the various sets and allows us to give “proof by inspection” of a nonelementary result of Horodecki et al [Phys. Lett. A223, 18 (1996)] that for two qubits, Peres PPT (positive partial transpose) test for separability is iff. We then show that the CHSH Bell inequalities can be visualized as circles and cylinders in the same diagram. This allows us to give a geometric proof of yet another result of Horodecki et al [Phys. Lett. A200, 340344 (1995)], which optimizes the violation of the CHSH Bell inequality. Finally, we give numerical evidence that, remarkably, allowing Alice and Bob to use three rather than two measurements each does not help them to distinguish any new entangled SLOCC equivalence class beyond the CHSH class.

1.
Avron
,
J. E.
and
Kenneth
,
O.
(unpublished).
2.
Bennett
,
C. H.
,
Popescu
,
S.
,
Rohrlich
,
D.
,
Smolin
,
J. A.
, and
Thapliyal
,
A. V.
, “
Exact and asymptotic measures of multipartite pure-state entanglement
,”
Phys. Rev. A
63
,
012307
(
2000
).
3.
Bertlmann
,
R. A.
,
Narnhofer
,
H.
, and
Thirring
,
W.
, “
Geometric picture of entanglement and bell inequalities
,”
Phys. Rev. A
66
,
032319
(
2002
).
4.
Bruß
,
D.
, “
Characterizing entanglement
,”
J. Math. Phys.
43
,
4237
4251
(
2002
),
5.
Choi
,
M. D.
, “
Completely positive linear maps on complex matrices
,”
Linear Algebr. Appl.
10
,
285
290
(
1975
).
6.
Clauser
,
J. F.
,
Horne
,
A. M.
,
Shimony
,
A.
, and
Holt
,
R. A.
, “
Proposed experiment to test local hidden-variable theories
,”
Phys. Rev. Lett.
23
,
880
884
(
1969
).
7.
Collins
,
D.
and
Gisin
,
N.
, “
A relevant two qubit bell inequality inequivalent to the chsh inequality
,”
J. Phys. A
37
,
1775
1787
(
2004
).
8.
Dür
,
W.
,
Vidal
,
G.
, and
Cirac
,
J. I.
, “
Three qubits can be entangled in two inequivalent ways
,”
Phys. Rev. A
62
,
062314
(
2000
).
9.
Gisin
,
N.
, “
Hidden quantum nonlocality revealed by local filters
,”
Phys. Lett. A
210
,
151
156
(
1996
).
10.
Horodecki
,
M. E.
,
Horodecki
,
P.
, and
Horodecki
,
R.
, “
Separability of mixed states: necessary and sufficient conditions
,”
Phys. Lett. A
223
,
1
8
, (
1996
).
11.
Horodecki
,
R.
, and
Horodecki
,
M.
, “
Information-theoretic aspects of inseparability of mixed states
,”
Phys. Rev. A
54
,
1838
1843
(
1996
).
12.
Horodecki
,
R.
,
Horodecki
,
P.
, and
Horodecki
,
M.
, “
Violating bell inequality by mixed spin-12 states: necessary and sufficient condition
,”
Phys. Lett. A
200
,
340
344
(
1995
).
13.
Horodecki
,
R.
,
Horodecki
,
P.
,
Horodecki
,
M. E.
, and
Horodecki
,
K.
, e-print arXiv:quant-ph∕0702225.
14.
King
,
R.
and
Ruskai
,
M. B.
, “
Minimal Entropy of States Emerging from Noisy Quantum Channels
,”
IEEE Trans. Inf. Theory
47
,
192
209
(
1999
),
15.
Leinaas
,
J. M.
,
Myrheim
,
J.
, and
Ovrum
,
E.
, “
Geometrical aspects of entanglement
,”
Phys. Rev. A
74
,
012313
(
2006
).
16.
Nielsen
,
M. A.
and
Chuang
,
I. L.
,
Quantum Computation and Quanum Information
(
Cambridge University Press
,
Cambridge
,
2000
).
17.
Peres
,
A.
, “
All the bell inequalities
,”
Found. Phys.
29
,
589
614
(
1999
).
18.
Peres
,
A.
,
Quantum Theory: Concepts and Methods
(
Springer
,
New York
,
1995
).
19.
Peres
,
A.
, “
Separability criterion for density matrices
,”
Phys. Rev. Lett.
77
,
1413
1415
(
1996
).
20.
Tyrrell Rockafellar
,
R.
,
Convex Analysis
(
Princeton University Press
,
Princeton, NJ
,
1970
).
21.
Ruskai
,
M. R.
, “
Qubit entanglement breaking channels
,”
Rev. Math. Phys.
15
,
643
662
(
2003
),
22.
Ruskai
,
M. B.
,
Szarek
,
S.
, and
Werner
,
E.
, “
An analysis of completely-positive trace-preserving maps on M2
,”
Linear Algebr. Appl.
347
,
159
187
(
2002
).
23.
Terhal
,
B. M.
, “
Bell inequalities and the separability criterion
,”
Phys. Lett. A
271
,
319
326
, (
2000
).
24.
Terhal
,
B. M.
, “
Detecting quantum entanglement
,”
Theor. Comput. Sci.
287
,
313
335
, (
2002
),
25.
Tung
,
W.-K.
,
Group Theory in Physics
(
World Scientific
,
Singapore
,
1985
).
26.
Verstraete
,
F.
,
Dehaene
,
J.
, and
De Moor
,
B.
, “
Lorentz singular-value decomposition and its applications to pure states of three qubits
,”
Phys. Rev. A
65
,
032308
(
2002
).
27.
Vollbrecht
,
K. G. H.
and
Werner
,
R. F.
, “
Entanglement measures under symmetry
,”
Phys. Rev. A
64
,
062307
(
2001
).
28.
Werner
,
R. F.
, and
Wolf
,
M. M.
Bell inequalities and entanglement
,”
Quantum Inf. Comput.
1
,
1
25
(
2001
).
You do not currently have access to this content.