The quantum effects for a physical system can be described by the set E(H) of positive operators on a complex Hilbert space H that are bounded above by the identity operator I. For A, BE(H), the operation of sequential product AB=A12BA12 was proposed as a model for sequential quantum measurements. A nice investigation of properties of the sequential product has been carried over [Gudder, S. and Nagy, G., “Sequential quantum measurements,” J. Math. Phys.42, 5212 (2001)]. In this note, we extend some results of this reference. In particular, a gap in the proof of Theorem 3.2 in this reference is overcome. In addition, some properties of generalized infimum AB are studied.

1.
Ando
,
T.
, “
Problem of infimum in the positive cone; Analytic and geometric inequalities and applications
,”
Math. Appl.
478
,
1
(
1999
).
2.
Busch
,
P.
, and
Singh
,
J.
, “
Luders theorem for unsharp quantum measurements
,”
Phys. Lett. A
249
,
10
(
1998
).
3.
Du
,
H. K.
,
Deng
,
C. Y.
, and
Li
,
Q. H.
, “
On the infimum problem of Hilbert space effects
,”
Sci. China, Ser. A: Math., Phys., Astron.
51
,
320
(
2006
).
4.
Dvurečenskij
,
A.
, and
Pulmannová
,
S.
, “
New trends in quantum structures, mathematics and Its applications
,”
J. Math. Phys.
46
,
062102
(
2005
).
5.
Gheondea
,
A.
, and
Gudder
,
S.
, “
Sequential product of quantum effect
,”
Proc. Am. Math. Soc.
132
,
503
(
2004
).
6.
Gheondea
,
A.
,
Gudder
,
S.
, and
Jonas
,
P.
, “
On the infimum of quantum effects
,”
J. Math. Phys.
46
,
062102
(
2005
).
7.
Gudder
,
S.
, “
Examples, problems, and results in effect algebras
,”
Int. J. Theor. Phys.
35
,
2365
(
1996
).
8.
Gudder
,
S.
, “
Lattice properties of quantum effects
,”
J. Math. Phys.
37
,
2637
(
1996
).
9.
Gudder
,
S.
, and
Greechie
,
R.
, “
Sequential products on effect algebras
,”
Rep. Math. Phys.
49
,
87
(
2002
).
10.
Gudder
,
S.
, and
Nagy
,
G.
, “
Sequential quantum measurements
,”
J. Math. Phys.
42
,
5212
(
2001
).
11.
Gudder
,
S.
, and
Nagy
,
G.
, “
Sequentially independent effects
,”
Proc. Am. Math. Soc.
130
,
1125
(
2002
).
12.
Jian
,
Y.
, and
Du
,
H. K.
, “
A note on commutativity up to a factor of bounded operators
,”
Proc. Am. Math. Soc.
132
,
1713
(
2004
).
13.
Kadison
,
R.
, “
Order properties of bounded self-adjoint operators
,”
Proc. Am. Math. Soc.
34
,
505
(
1951
).
14.
Kadison
,
R.
, and
Ringrose
,
J.
,
Fundamentals of the Theory of Operator Algebras (I)
(
American Mathematical Society
,
New York
,
1997
).
15.
Lahti
,
P.
, and
Maczynski
,
M.
, “
Partial order of quantum effects
,”
J. Math. Phys.
36
,
1673
(
1995
).
16.
Li
,
Y.
, and
Du
,
H. K.
, “
A note on the infimum problem of Hilbert space effects
,”
J. Math. Phys.
47
,
102103
(
2006
).
17.
Moreland
,
T.
, and
Gudder
,
S.
, “
Infima of Hilbert space effects
,”
Linear Algebr. Appl.
286
,
1
(
1999
).
18.
Murphy
,
G. J.
, C*-algebra and operator theory (
Academic
,
New York
,
1990
).
19.
Shmulyan
,
L. Y.
, “
An operator Hellinger integral
,”
Mat. Sb.
49
,
381
(
1959
).
You do not currently have access to this content.