We present the sublattice approach, a procedure to generate, from a given integrable lattice, a sublattice which inherits its integrability features. We consider, as illustrative example of this approach, the discrete Moutard 4-point equation and its sublattice, the self-adjoint 5-point scheme on the star of the square lattice, which are relevant in the theory of the integrable discrete geometries and in the theory of discrete holomorphic and harmonic functions (in this last context, the discrete Moutard equation is called discrete Cauchy-Riemann equation). Therefore an integrable, at one energy, discretization of elliptic two-dimensional operators is considered. We use the sublattice point of view to derive, from the Darboux transformations and superposition formulas of the discrete Moutard equation, the Darboux transformations and superposition formulas of the self-adjoint 5-point scheme. We also construct, from algebro-geometric solutions of the discrete Moutard equation, algebro-geometric solutions of the self-adjoint 5-point scheme. In particular, we show that the corresponding restrictions on the finite-gap data are of the same type as those for the fixed energy problem for the two-dimensional Schrödinger operator. We finally use these solutions to construct explicit examples of discrete holomorphic and harmonic functions, as well as examples of quadrilateral surfaces in R3.

1.
Adler
,
V. E.
and
Suris
,
Y. B.
, “
Q4: Integrable master equation related to an elliptic curve
,”
Int. Math. Res. Notices
47
,
2523
2553
(
2004
).
2.
Adler
,
V. E.
,
Bobenko
,
A. I.
, and
Suris
,
Y. B.
, “
Classification of integrable equations on quad-graphs. The consistency approach
,”
Commun. Math. Phys.
233
,
513
543
(
2003
).
3.
Akhmetshin
,
A. A.
,
Krichever
,
I. M.
, and
Volvovski
,
Y. S.
, “
Discrete analogs of the Darboux-Egoroff metrics
,”
Proc. Steklov Inst. Math.
225
,
16
39
(
1999
).
4.
Andrews
,
G. E.
,
Baxter
,
R. J.
, and
Forrester
,
P. J.
, “
Eight-vertex SOS model and generalized Rogers-Ramanujan-type identities
,”
J. Stat. Phys.
35
,
193
266
(
1984
).
5.
Bianchi
,
L.
,
Lezioni di Geometria Differenziale
(
Zanichelli
,
Bologna
,
1924
).
6.
Bobenko
,
A.
and
Pinkall
,
U.
, “
Discrete surfaces with constant negative Gaussian curvature and the Hirota equation
,”
J. Diff. Geom.
43
,
527
611
(
1996
).
7.
Bobenko
,
A. I.
and
Suris
,
Y. B.
, “
Integrable systems on quad-graphs
,”
Int. Math. Res. Notices
11
,
573
611
(
2002
).
8.
Bobenko
,
A. I.
,
Mercat
,
Ch.
, and
Suris
,
Y. B.
, “
Linear and nonlinear theories of discrete analytic functions. Integrable structure and isomonodromic Green’s function
,”
J. Reine Angew. Math.
583
,
117
161
(
2005
).
9.
Konopelchenko
,
B. G.
and
Pinkall
,
U.
, “
Projective generalizations of Lelieuvre’s formula
,”
Geom. Dedic.
79
,
81
99
(
2000
).
10.
Cherednik
,
I. V.
, “
Reality conditions in “finite-zone” integration
,”
Dokl. Akad. Nauk SSSR
252
,
1104
1108
(
1980
).
11.
Date
,
E.
,
Jimbo
,
M.
, and
Miwa
,
T.
, “
Method for generating discrete soliton equations. V
,”
J. Phys. Soc. Jpn.
52
,
766
771
(
1983
).
12.
Date
,
E.
,
Jimbo
,
M.
,
Kuniba
,
A.
,
Miwa
,
T.
, and
Okado
,
M.
, “
Exactly solvable SOS models. Local height probabilities and theta function identities
,”
Nucl. Phys. B
290
,
231
273
(
1987
).
13.
Doliwa
,
A.
and
Santini
,
P. M.
, “
The symmetric, D-invariant and Egorov reductions of the quadrilateral lattice
,”
J. Geom. Phys.
36
,
60
102
(
2000
).
14.
Dubrovin
,
B. A.
,
Krichever
,
I. M.
, and
Novikov
,
S. P.
, “
Schrödinger equation in magnetic field and Riemann surfaces
,”
Sov. Math. Dokl.
17
,
947
951
(
1976
).
15.
Duffin
,
R. J.
, “
Basic properties of discrete analytic functions
,”
Duke Math. J.
23
,
335
363
(
1956
).
16.
Duffin
,
R. J.
, “
Potential theory on a rhombic lattice
,”
J. Comb. Theory, Ser. A
5
,
258
272
(
1968
).
17.
Dynnikov
,
I. A.
and
Novikov
,
S. P.
, “
Geometry of the triangle equation on two-manifolds
,”
Mosc. Math. J.
3
,
419
438
(
2003
).
18.
Fay
,
J. D.
,
Theta Functions on Riemann Surfaces
(
Springer-Verlag
,
Berlin
,
1973
).
19.
Ferrand
,
J.
, “
Fonctions preharmoniques et fonctions preholomorphes
,”
Bull. Sci. Math.
68
,
152
180
(
1944
).
20.
Grinevich
,
P. G.
and
Novikov
,
S. P.
, “
Two-dimensional “inverse scattering problem” for negative energies and generalized-analytic functions. 1. Energies below the ground state
,”
Funct. Anal. Appl.
22
,
19
27
(
1988
).
21.
Kac
,
V. G.
and
van de Leur
,
J.
, in
The n-component KP Hierarchy and Representation Theory
,
Important Developments in Soliton Theory
, edited by
A. S.
Fokas
,
and
V. E.
Zakharov
,
, (
Springer
,
Berlin
,
1993
), pp.
302
343
.
22.
Kenyon
,
R.
, “
The Laplacian and Dirac operators on critical planar graphs
,”
Invent. Math.
150
,
409
439
(
2002
).
23.
Krichever
,
I. M.
, “
An algebraic-geometric construction of the Zakharov-Shabat equations and their periodic solutions
,”
Sov. Math. Dokl.
17
,
394
397
(
1976
).
24.
Krichever
,
I. M.
, “
Two-dimensional periodic difference operators and algebraic geometry
,”
Dokl. Akad. Nauk SSSR
285
,
31
36
(
1985
).
25.
Kulish
,
P. P.
,
Reshetikhin
,
N. Yu.
, and
Sklyanin
,
E. K.
, “
Yang-Baxter equation and representation theory: I
,”
Lett. Math. Phys.
5
,
393
403
(
1981
).
26.
Levi
,
D.
and
Benguria
,
R.
, “
Bäcklund transformations and nonlinear differential-difference equations
,”
Proc. Natl. Acad. Sci. U.S.A.
77
,
5025
5027
(
1980
).
27.
Manakov
,
S. V.
, “
The method of the inverse scattering problem, and two-dimensional evolution equations
,”
Usp. Mat. Nauk
31
,
245
246
(
1976
) (in Russian).
28.
Mercat
,
Ch.
, “
Discrete Riemann surfaces and the Ising model
,”
Commun. Math. Phys.
218
,
177
216
(
2001
);
Ph.D. thesis,
Université Louis Pasteur
(Strasbourg)
1998
, http://www-irma.u-strasbg.fr/irma/publications/1998/98014.shtml
29.
Mercat
,
Ch.
, “
Exponentials form a basis of discrete holomorphic functions on a compact
,”
Bull. Soc. Math. France
132
,
305
326
(
2004
).
30.
Miwa
,
T.
, “
On Hirota’s difference equations
,”
Proc. Jpn. Acad., Ser. A: Math. Sci.
58
,
9
12
(
1982
).
31.
Mumford
,
D.
,
Tata Lectures on Theta I
(
Birkhäuser Boston
,
Boston, MA
,
1983
).
32.
Natanzon
,
S. M.
, “
Real nonsingular finite zone solutions of soliton equations
,”
Am. Math. Soc. Transl.
170
,
153
183
(
1995
).
33.
Nieszporski
,
M.
and
Santini
,
P. M.
, “
The self-adjoint 5-point and 7-point difference operators, the associated Dirichlet problems, Darboux transformations and Lelieuvre’s formulas
,”
Glasg. Math. J.
47A
,
133
147
(
2005
).
34.
Nieszporski
,
M.
,
Santini
,
P. M.
, and
Doliwa
,
A.
, “
Darboux transformations for 5-point and 7-point self-adjoint schemes and an integrable discretization of the 2D Schrödinger operator
,”
Phys. Lett. A
323
,
241
250
(
2004
).
35.
Nijhoff
,
F. W.
and
Capel
,
H. W.
, “
The discrete Korteweg-de Vries equation
,”
Acta Appl. Math.
39
,
133
158
(
1995
).
36.
Nijhoff
,
F. W.
,
Quispel
,
G. R. W.
, and
Capel
,
H. W.
, “
Direct linearization of nonlinear difference difference equations
,”
Phys. Lett.
97A
,
125
128
(
1983
).
37.
Nimmo
,
J. J. C.
and
Schief
,
W. K.
, “
Superposition principles associated with the Moutard transformation. An integrable discretisation of a (2+1)-dimensional sine-Gordon system
,”
Proc. R. Soc. London, Ser. A
453
,
255
279
(
1997
).
38.
Novikov
,
S. P.
, “
A periodic problem for the Korteweg-de Vries equation. I
,”
Funkc. Anal. Priloz.
8
,
54
66
(
1974
) (in Russian).
39.
Novikov
,
S. P.
and
Dynnikov
,
I. A.
, “
Discrete spectral symmetries of low-dimensional differential operators and difference operators on regular lattices and two-dimensional manifolds
,”
Russ. Math. Surveys
52
,
1057
1116
(
1997
).
40.
Novikov
,
S. P.
and
Veselov
,
A. P.
, “
Finite-zone, two-dimensional Schrödinger operators. Potential operators
,”
Sov. Math. Dokl.
30
,
705
708
(
1984
);
Novikov
,
S. P.
and
Veselov
,
A. P.
,“
Finite-zone, two-dimensional potential Schrödinger operators. Explicit formulas and evolution equations
,”
Sov. Math. Dokl.
30
,
588
591
(
1984
).
41.
Ocneanu
,
A.
, in
Operator Algebras and Applications
,
London Mathematical Society Lecture Note Series Vol. 136
(
Cambridge University Press
,
Cambridge
,
1988
), Vol.
2
, pp.
119
172
.
42.
Pasquier
,
V.
, “
Two-dimensional critical systems labelled by Dynkin diagrams
,”
Nucl. Phys. B
285
,
162
172
(
1987
).
43.
Roche
,
Ph.
, “
Ocneanu cell calculus and integrable lattice models
,”
Commun. Math. Phys.
127
,
395
424
(
1990
).
44.
Sauer
,
R.
,
Differenzengeometrie
(
Springer
,
Berlin
,
1970
).
45.
Thurston
,
W. P.
, “
The finite Riemann mapping theorem
,”
Invited talk at the International Symposium on the Occasion of the Proof of the Bieberbach Conjecture
, Purdue University,
1985
(unpublished).
46.
Ward
,
R. S.
, “
Integrable and solvable systems, and relations among them
,”
Philos. Trans. R. Soc. London, Ser. A
315
,
451
457
(
1985
).
You do not currently have access to this content.