The double elliptic equation method is presented for constructing exact traveling wave solutions of nonlinear partial differential equations. With the aid of Maple, more new exact solutions are obtained for the (n+1)-dimensional sinh-Gordon equation. These solutions contain logarithmic functions, Jacobi elliptic functions, hyperbolic functions, trigonometric functions, and their combinations.

1.
C. S.
Gardner
,
J. M.
Greene
,
M. D.
Kruskal
, and
R. M.
Miura
,
Phys. Rev. Lett.
19
,
1095
(
1967
)..
2.
X. B.
Hu
and
W. X.
Ma
,
Phys. Lett. A
293
,
161
(
2002
).
3.
J.
Weiss
,
M.
Tabor
, and
G.
Garnevale
,
J. Math. Phys.
24
,
522
(
1983
).
4.
M. L.
Wang
,
Y. B.
Zhou
, and
Z. B.
Li
, Phys. Rev. A 216,
67
(
1996
).
5.
B.
Tibor
,
L.
Béla
,
M.
Csaba
, and
U.
Zsolt
,
Powder Technol.
97
,
100
(
1998
).
7.
Z. T.
Fu
,
S. K.
Liu
,
S. D.
Liu
, and
Q.
Zhao
,
Phys. Lett. A
290
,
72
(
2001
).
8.
H. T.
Chen
and
H. Q.
Zhang
,
Chaos, Solitons Fractals
15
,
585
(
2003
).
9.
H. T.
Chen
and
H. Q.
Zhang
,
Chaos, Solitons Fractals
20
,
765
(
2004
).
10.
E.
G.
Fan
,
Chaos, Solitons Fractals
16
,
819
(
2003
).
11.
Y.
Chen
,
Q.
Wang
, and
B.
Li
,
Chaos, Solitons Fractals
26
,
231
(
2005
).
12.
J. B.
Li
and
M.
Li
,
Chaos, Solitons Fractals
25
,
1037
(
2005
).
13.
H. Q.
Zhang
,
Chaos, Solitons Fractals
28
,
489
(
2006
).
14.
A. M.
Wazwaz
,
Appl. Math. Comput.
15
,
1196
(
2005
).
15.
Z. J.
Qiao
,
Physica A
243
,
141
(
1997
).
16.
Z. Y.
Yan
,
Chaos, Solitons Fractals
16
,
291
(
2003
).
You do not currently have access to this content.