We find sets of solutions to the generalized spheroidal wave equation (GSWE) or, equivalently, to the confluent Heun equation. Each set is constituted by three solutions, one given by a series of ascending powers of the independent variable, and the others by series of regular and irregular confluent hypergeometric functions. For a fixed set, the solutions converge over different regions of the complex plane but present series coefficients proportional to each other. These solutions for the GSWE afford solutions to a double-confluent Heun equation by a taking-limit process due to Leaver. [E. W. Leaver, J. Math. Phys.27, 1238 (1986)]. Another procedure, called Whittaker-Ince limit [B. D. Figueiredo, J. Math. Phys.46, 113503 (2005)], provides solutions in series of powers and Bessel functions for two other equations with a different type of singularity at infinity. In addition, new solutions are obtained for the Whittaker-Hill and Mathieu equations [F. M. Arscott, Proc. R. Soc. EdinburgA67, 265 (1967)] by considering these as special cases of both the confluent and double-confluent Heun equations. In particular, we find that each of the Lindemann-Stieltjes solutions for the Mathieu equation [E. T. Whittaker and G. N. Watson, A Course of Modern Analysis, Cambridge University Press (1945)] is associated with two expansions in series of Bessel functions. We also discuss a set of solutions in series of hypergeometric and confluent hypergeometric functions for the GSWE and use their Leaver limits to obtain infinite-series solutions for the Schrödinger equation with an asymmetric double-Morse potential. Finally, the possibility of extending the solutions of the GSWE to the general Heun equation is briefly discussed.

1.
E. W.
Leaver
,
J. Math. Phys.
27
,
1238
(
1986
).
2.
P.
Humbert
,
Fonctions de Lamé et Fonctions de Mathieu
,
Mémorial des Sciences Mathématiques
, Vol.
X
(
Gauthier-Villards
,
Paris
,
1926
).
3.
E. L.
Ince
,
Proc. London Math. Soc.
23
,
56
(
1923
).
4.
B. D. B.
Figueiredo
,
J. Math. Phys.
46
,
113503
(
2005
).
5.
A.
Decarreau
,
P.
Maroni
, and
A.
Robert
,
Ann. Soc. Sci. Bruxelles, Ser. 1
T92
,
151
(
1978
).
6.
O. B.
Zaslavskii
and
V. V.
Ulyanov
,
Sov. Phys. JETP
60
,
991
(
1984
).
7.
V. V.
Ulyanov
and
O. B.
Zaslavskii
,
Phys. Rep.
261
,
179
(
1992
).
8.
A. G.
Ushveridze
,
Sov. J. Part. Nucl.
20
,
504
(
1989
).
9.
A. G.
Ushveridze
,
Quasi-Exactly Solvable Models in Quantum Mechanics
(
IOP
,
Bristol
,
1994
).
10.
B. D. B.
Figueiredo
,
J. Phys. A
35
,
2877
(
2002
);
B. D. B.
Figueiredo
,
J. Phys. A
35
,
4799
(E) (
2002
).
11.
H.
Suzuki
,
E.
Takasugi
, and
H.
Hiroshi
,
Prog. Theor. Phys.
100
,
491
(
1998
).
12.
H.
Suzuki
,
E.
Takasugi
, and
H.
Umetsu
,
Prog. Theor. Phys.
102
,
253
(
1999
).
13.
F. M. J.
Olver
,
Asymptotics and Special Functions
(
Academic
,
New York
,
1974
).
14.
A.
Decarreau
,
M. C.
Dumont-Lepage
,
P.
Maroni
,
A.
Robert
, and
A.
Ronveaux
,
Ann. Soc. Sci. Bruxelles, Ser. 1
T92
,
53
(
1978
).
15.
Heun’s Differential Equations
, edited by
A.
Ronveaux
(
Oxford University Press
,
New york
,
1995
).
16.
A. H.
Wilson
,
Proc. R. Soc. London, Ser. A
,
118
,
617
(
1928
).
17.
D.
Schmidt
and
G.
Wolf
,
Double Confluent Heun Equation
(Ref. 15), Pt. C.
18.
S.
Mignemi
,
J. Math. Phys.
32
,
3047
(
1991
).
19.
A.
Malmendier
,
J. Math. Phys.
44
,
4308
(
2003
).
20.
T.
Eguchi
and
A. J.
Hanson
,
Phys. Lett.
74B
,
249
(
1978
).
21.
F. M.
Arscott
,
Proc. R. Soc. Edinburgh, Sect. A: Math. Phys. Sci.
67
,
265
(
1967
).
22.
E. W.
McLachlan
,
Theory and Application of Mathieu Functions
(
Dover
,
New York
,
1964
).
23.
E. L.
Ince
,
Proc. London Math. Soc.
25
,
53
(
1926
).
24.
W. G.
Barber
and
H. R.
Hassé
,
Proc. Cambridge Philos. Soc.
25
,
564
(
1935
).
25.
V. S.
Otchik
, in
Quantum Systems: New Trends and Methods
, edited by
A. O.
Barut
,
I. D.
Feranchuk
,
Ya. M.
Shnir
, and
L. T.
Tomil'chik
(
World Scientific
,
Singapore
,
1995
).
26.
S.
Mano
,
H.
Suzuki
, and
E.
Takasugi
,
Prog. Theor. Phys.
95
,
1079
(
1996
).
27.
S.
Mano
,
H.
Suzuki
, and
E.
Takasugi
,
Prog. Theor. Phys.
96
,
549
(
1996
).
28.
S.
Mano
and
E.
Takasugi
,
Prog. Theor. Phys.
97
,
213
(
1997
).
29.
F.
Lindemann
,
Math. Ann.
22
,
117
(
1883
).
30.
E. T.
Whittaker
and
G. N.
Watson
,
A Course of Modern Analysis
(
Cambridge University Press
,
Cambridge
,
1945
).
31.
E.
Fisher
,
Philos. Mag.
24
,
245
(
1937
).
32.
D.
Bini
,
C.
Cherubini
,
R. T.
Jantzen
, and
B.
Mashhoon
,
Phys. Rev. D
67
,
084013
(
2003
).
33.
W.
Gautschi
,
SIAM Rev.
9
,
24
(
1967
).
34.
F. M.
Arscott
,
Periodic Differential Equations
(
Macmillan
,
New York
,
1964
).
35.
A.
Erdélyi
,
W.
Magnus
,
F.
Oberhettinger
, and
F. G.
Tricomi
,
Higher Transcendental Functions
(
McGraw-Hill
,
New York
,
1953
), Vol.
1
.
36.
Handbook of Mathematical Functions
, edited by
M.
Abramowitz
and
I. A.
Stegun
(
Dover
,
New York
,
1965
).
37.
I. S.
Gradshteyn
and
I. M.
Ryzhik
,
Table of Integrals, Series and Products
(
Academic
,
New York
,
1994
).
38.
A.
Lemieux
and
A. K.
Bose
,
Ann. Inst. Henri Poincare, Sect. A
10
,
259
(
1969
).
39.
Y. L.
Luke
,
Integrals of Bessel Functions
(
McGraw-Hill
,
New York
,
1962
).
40.
E.
Schrödinger
,
Commentationes Pontificiae Academiae Scientiarum
2
,
321
(
1938
).
41.
E.
Schrödinger
,
Proc. Irish Acad.
A46
,
25
(
1940
).
42.
N. D.
Birrell
and
P. C. W.
Davies
,
Quantum Fields in Curved Space
(
Cambridge University Press
,
New York
,
1982
).
43.
C. J.
Kleinman
,
Y.
Hahn
, and
L.
Spruch
,
Phys. Rev.
165
,
53
(
1968
).
44.
W.
Bühring
,
J. Math. Phys.
15
,
1451
(
1974
).
45.
W.
Bühring
, in
Centennial Workshop on Heun’s Equation
, edited by
A.
Seeger
and
W.
Lay
(
Max-Plank-Institut für Metallforchung, Institut für Physik
,
Stuttgart
,
1990
).
46.
E. D.
Fackerell
and
R. G.
Crossman
,
J. Math. Phys.
18
,
1849
(
1977
).
47.
A.
Erdélyi
,
Q. J. Math.
15
,
62
(
1944
).
48.
K.
Heun
,
Math. Ann.
33
,
161
(
1899
).
49.
R. S.
Maier
, e-print math.CA/0408317 v2 (
2006
).
You do not currently have access to this content.