We give a proof of the nonintegrability of an important three-body problem in atomic physics. We consider the classical model for the helium atom in full dimension, thus completing our previous proof for the frozen planetary approximation. To our knowledge there is not any such a proof in the literature. We apply a theorem due to Morales-Ruiz and Ramis: if a Hamiltonian system, derived from a homogeneous potential is integrable, then all integrability factors, related to the Hessian of the homogeneous potentials, satisfy certain conditions related to the degree of homogeneity. In the helium atom case, these coefficients should all be discrete. We exhibit a set of nondiscrete values determined analytically. This implies the nonintegrability of the helium atom without any computer aid. We also extend this theorem to various two-electron atoms. In the case of strange helium atoms we provide a computer aided proof of nonintegrability.
Skip Nav Destination
Article navigation
September 2006
Research Article|
September 29 2006
Nonintegrability of the three-body problems for the classical helium atom Available to Purchase
T. J. Stuchi;
T. J. Stuchi
a)
Instituto de Física,
Universidade Federal do Rio de Janeiro
, Caixa Postal 68.528, 21945-970 Rio de Janeiro, RJ, Brazil
Search for other works by this author on:
A. López-Castillo;
A. López-Castillo
Departamento de Química,
Centro Universitário FIEO (UNIFIEO)
, Osasco, SP, 06020-190, Brazil
Search for other works by this author on:
M. A. Almeida
M. A. Almeida
Instituto de Física,
Universidade Federal do Rio de Janeiro
, Caixa Postal 68.528, 21945-970 Rio de Janeiro, RJ, Brazil
Search for other works by this author on:
T. J. Stuchi
a)
Instituto de Física,
Universidade Federal do Rio de Janeiro
, Caixa Postal 68.528, 21945-970 Rio de Janeiro, RJ, Brazil
A. López-Castillo
Departamento de Química,
Centro Universitário FIEO (UNIFIEO)
, Osasco, SP, 06020-190, Brazil
M. A. Almeida
Instituto de Física,
Universidade Federal do Rio de Janeiro
, Caixa Postal 68.528, 21945-970 Rio de Janeiro, RJ, Brazila)
Electronic mail: [email protected]
J. Math. Phys. 47, 093506 (2006)
Article history
Received:
January 03 2006
Accepted:
August 01 2006
Citation
T. J. Stuchi, A. López-Castillo, M. A. Almeida; Nonintegrability of the three-body problems for the classical helium atom. J. Math. Phys. 1 September 2006; 47 (9): 093506. https://doi.org/10.1063/1.2339013
Download citation file:
Pay-Per-View Access
$40.00
Sign In
You could not be signed in. Please check your credentials and make sure you have an active account and try again.
Citing articles via
Well-posedness and decay structure of a quantum hydrodynamics system with Bohm potential and linear viscosity
Ramón G. Plaza, Delyan Zhelyazov
Connecting stochastic optimal control and reinforcement learning
J. Quer, Enric Ribera Borrell
Related Content
Nonintegrability of Bianchi VIII Hamiltonian system
J. Math. Phys. (April 2001)
Semiclassical perturbations of single-degree-of-freedom Hamiltonian systems II: Nonintegrability
J. Math. Phys. (October 2024)
On the nonintegrability of the generalized van der Waals Hamiltonian system
J. Math. Phys. (August 2000)
Periodic orbits and nonintegrability of generalized classical Yang–Mills Hamiltonian systems
J. Math. Phys. (March 2011)
A new proof of Poincaré’s result on the restricted three-body problem
J. Math. Phys. (May 2025)