We show that the three-body Calogero model with inverse square potentials can be interpreted as a maximally superintegrable and multiseparable system in Euclidean three-space. As such it is a special case of a family of systems involving one arbitrary function of one variable.

1.
Adler
,
M.
, “
Some finite dimensional integrable systems and their scattering behavior
,”
Commun. Math. Phys.
55
,
195
230
(
1977
).
2.
Benenti
,
S.
,
Chanu
,
C.
, and
Rastelli
,
G.
, “
The super-integrability of the three body inverse-square Calogero system
,”
J. Math. Phys.
41
,
4654
4678
(
2000
).
3.
Calogero
,
F.
, “
Solution to a three-body problem in one dimension
,”
J. Math. Phys.
10
,
2191
2196
(
1969
).
4.
Calogero
,
F.
, “
Solution to the one-dimensional N-body problems with quadratic and/or inversely quadratic pair potentials
,”
J. Math. Phys.
12
,
419
436
(
1971
).
5.
Evans
,
N. W.
, “
Superintegrability in classical mechanics
,”
Phys. Rev. A
41
,
5666
5626
(
1990
).
6.
Fehér
,
L.
,
Tsutsui
,
I.
, and
Fülöp
,
T.
, “
Inequivalent quantizations of the three-particle Calogero model constructed by separation of variables
,”
Nucl. Phys. B
715
,
713
757
(
2005
).
7.
Friš
,
I.
,
Mandrosov
,
V.
,
Smorodinsky
,
Ya. A.
,
Uhliř
,
M.
, and
Winternitz
,
P.
, “
On higher order symmetries in quantum mechanics
,”
Phys. Lett.
16
,
354
356
(
1965
).
8.
Gravel
,
S.
, “
Hamiltonians separable in Cartesian coordinates and third order integrals of motion
,”
J. Math. Phys.
45
,
1003
1019
(
2004
).
9.
Gravel
,
S.
, and
Winternitz
,
P.
, “
Superintegrability with third order integrals in quantum and classical mechanics
,”
J. Math. Phys.
43
,
5902
5912
(
2002
).
10.
Hartmann
,
H.
, “
Die Bewengung eines Körpers in einem ringförmigen Potentialfeld
,”
Theor. Chim. Acta
24
,
201
206
(
1972
).
11.
Hietarinta
,
J.
, “
Classical vs quantum integrability
,”
J. Math. Phys.
25
,
1833
1840
(
1989
).
12.
Horwood
,
J. T.
,
McLenaghan
,
R. G.
, and
Smirnov
,
R. G.
, “
Invariant classification of orthogonally separable Hamiltonian systems in Euclidean space
,”
Commun. Math. Phys.
259
,
679
705
(
2005
).
13.
Jacobi
,
C. G. J.
, “
Sur l’élimination des noeuds dans le Problème des Trois Corps
,”
J. Reine Angew. Math.
26
,
115
131
(
1843
).
14.
Kalnins
,
E. G.
,
Kress
,
J.
, and
Miller
,
W.
, Jr.
, “
Second order superintegrable systems in conformally flat spaces. III. Three-dimensional classical structure theory
,”
J. Math. Phys.
46
,
1
28
(
2005
).
15.
Kibler
,
M.
, and
Winternitz
,
P.
, “
Dynamical invariance algebra of the Hartmann potential
,”
J. Phys. A
20
,
4097
4108
(
1987
).
16.
Makarov
,
A. A.
,
Smorodinsky
,
Ya. A.
,
Valiev
,
Kh.
, and
Winternitz
,
P.
, “
A systematic approach for nonrelativistic systems with dynamical symmetries
,”
Nuovo Cimento D
52
,
1061
1084
(
1967
).
17.
McLenaghan
,
R. G.
,
Smirnov
,
R. G.
, and
The
,
D.
, “
Group invariant classification of separable Hamiltonian systems in the Euclidean plane and the O(4)-symmetric Yang-Mills theories of Yatsun
,”
J. Math. Phys.
43
,
1422
1422
(
2002
).
18.
McLenaghan
,
R. G.
,
Smirnov
,
R. G.
, and
The
,
D.
, “
An extension of the classical theory of invariants to pseudo-Riemannian geometry and Hamiltonian mechanics
,”
J. Math. Phys.
45
,
1079
1120
(
2004
).
19.
Nekhoroshev
,
M. N.
, “
Action-angle and their generalizations
,”
Trans. Mosc. Math. Soc.
26
,
180
198
(
1972
).
20.
Rañada
,
M. F.
, “
Superintegrability of the Calogero-Moser system: Constants of motion, master symmetries and time-dependent symmetries
,”
J. Math. Phys.
40
,
236
247
(
1999
).
21.
Rauch-Wojciechowski
,
S.
, and
Waksjö
,
C.
, “
What an effective criterion of separability says about the Calogero type systems?
,”
J. Nonlinear Math. Phys.
12
,
535
547
(
2005
).
22.
Rodriguez
,
M. A.
, and
Winternitz
,
P.
, “
Quantum superintegrability and exact solvability in n dimensions
,”
J. Math. Phys.
43
,
1309
1322
(
2002
).
23.
Tempesta
,
P.
,
Turbiner
,
A. V.
, and
Winternitz
,
P.
, “
Exact solvability of superintegrable systems
,”
J. Math. Phys.
42
,
4248
4257
(
2001
).
24.
Tempesta
,
P.
,
Winternitz
,
P.
 et al. (editors),
Superintegrability in Classical and Quantum Systems
,
CRM Proceedings and Lecture Notes
, Vol.
37
(
American Mathematical Society
, Providence, RI,
2004
).
25.
Winternitz
,
P.
, and
Friš
,
I.
, “
Invariant expansions of relativistic amplitudes and subgroups of the proper Lorenz group
,”
Sov. J. Nucl. Phys.
1
,
636
643
(
1965
).
26.
Wojciechowski
,
S.
, “
Superintegrability of the Calogero-Moser systems
,”
Phys. Lett.
95A
,
279
281
(
1983
).
You do not currently have access to this content.