We propose a new framework for constructing geometric and physical models on nonholonomic manifold provided both with Clifford-Lie algebroid symmetry and nonlinear connection structure. Explicit parametrizations of generic off-diagonal metrics and linear and nonlinear connections define different types of Finsler, Lagrange, and/or Riemann–Cartan spaces. A generalization to spinor fields and Dirac operators on nonholonomic manifolds motivates the theory of Clifford algebroids defined as Clifford bundles, in general, enabled with nonintegrable distributions defining the nonlinear connection. In this work, we elaborate the algebroid spinor differential geometry and formulate the (scalar, Proca, graviton, spinor, and gauge) field equations on Lie algebroids. The paper communicates new developments in geometrical formulation of physical theories and this approach is grounded on a number of previous examples when exact solutions with generic off-diagonal metrics and generalized symmetries in modern gravity define nonholonomic spacetime manifolds with uncompactified extra dimensions.

1.
S.
Vacaru
,
J. Math. Phys.
46
,
042503
(
2005
).
2.
S. Vacaru, gr–qc/ 0501057.
3.
F.
Etayo
,
R.
Santamaría
, and
S.
Vacaru
,
J. Math. Phys.
46
,
032901
(
2005
).
4.
A.
Cannas da Silva
and
A.
Weinstein
,
Geometric Models for Noncommutative Algebras
(
American Mathematical Society
, Providence, RI,
1999
).
5.
R.
Miron
and
M.
Anastasiei
,
The Geometry of Lagrange Spaces: Theory and Applications
(
Kluwer
, Dordrecht,
1994
).
6.
S.
Vacaru
,
E.
Gaburov
, and
D.
Gontsa
, hep-th/0310133;
in Clifford and Riemann- Finsler Structures in Geometric Mechanics and Gravity, Selected Works
, Differential Geometry – Dynamical Systems Monograph 7 (
Geometry Balkan Press
,
Bucharest
,
2006
), Chap 2;
7.
S.
Vacaru
, math.DG/0408121;
Clifford and Riemann- Finsler Structures in Geometric Mechanics and Gravity, Selected Works
, Differential Geometry – Dynamical Systems Monograph 7 (
Geometry Balkan Press
,
Bucharest
,
2006
), Chap. 15;
8.
S.
Vacaru
and
O.
Tintareanu-Mircea
,
Nucl. Phys. B
626
,
239
(
2002
).
9.
S.
Vacaru
and
F. C.
Popa
,
Class. Quantum Grav.
18
,
4921
(
2001
).
10.
S.
Vacaru
and
N.
Vicol
,
Int. J. Math. Math. Sci.
23
,
1189
(
2004
).
11.
S.
Vacaru
,
J. Math. Phys.
37
,
508
(
1996
).
12.
S.
Vacaru
,
J. High Energy Phys.
9809
,
011
(
1998
).
13.
S.
Vacaru
and
P.
Stavrinos
,
Spinors and Space-Time Anisotropy
(
Athens University Press
, Athens, Greece,
2002
),
gr-qc/0112028.
14.
A.
Weinstein
,
Curr. Appl. Phys.
7
,
201
(
1996
).
15.
P.
Libermann
,
Arch. Math.
32
,
147
(
1996
).
16.
E.
Martinez
,
Acta Appl. Math.
67
,
295
(
2001
).
17.
M.
de Leon
,
J. C.
Marrero
, and
E.
Martinez
, math.DG/0407528.
19.
R.
Penrose
and
W.
Rindler
,
Two-Spinor Calculus and Relativistic Fields
Spinors and Space-Time Vol.
1
(
Cambridge University Press
, Cambridge,
1984
).
20.
R.
Penrose
and
W.
Rindler
,
Spinor and Twistor Methods in Space-Time Geometry
Spinors and Space-Time Vol.
2
(
Cambridge University Press
, Cambridge,
1986
).
21.
C. P.
Luehr
and
M.
Rosenbaum
,
J. Math. Phys.
15
,
1120
(
1974
).
22.
A.
Salam
and
J.
Strathdee
,
Ann. Phys. (N.Y.)
141
,
316
(
1982
).
23.
J. M.
Overduin
and
P. S.
Wesson
,
Phys. Rep.
283
,
303
(
1997
).
24.
J. M.
Gracia–Bondia
,
J. C.
Varilli
, and
H.
Figueroa
,
Elements of Noncommutative Geometry
(
Birkhauser
, Boston,
2001
).
25.
H.
Schroeder
, math. DG/ 0005239.
26.
A.
Ashtekar
,
Phys. Rev. D
36
,
1587
(
1987
).
27.
You do not currently have access to this content.