Models of the quantum oscillator, based on the discrete series representations of the quantum algebra suq(1,1), are constructed. The position and momentum operators in these models are twisted generators J2 and J1 for such suq(1,1)-representations, respectively. As in the case of the standard harmonic oscillator in quantum mechanics, the position and momentum operators here have continuous simple spectra. These spectra cover a finite interval on the real line, which depends on a value of q. Eigenfunctions of these operators are explicitly found. It is shown that the Macfarlane–Biedenharn q-oscillator is a limit case of the oscillators under discussion. The q=1 limit case, in which spectra of the position and momentum operators cover the whole real line, is also considered in detail.

1.
A. J.
Macfarlane
,
J. Phys. A
22
,
4581
(
1989
).
2.
L. C.
Biedenharn
,
J. Phys. A
22
,
L873
(
1989
).
3.
D. V.
Anchishkin
,
A. M.
Gavrilik
, and
N. Z.
Iorgov
,
Mod. Phys. Lett. A
15
,
1637
(
2000
).
4.
L. V.
Adamska
and
A. M.
Gavrilik
,
J. Phys. A
37
,
4787
(
2004
).
5.
E. V.
Damaskinsky
and
P. P.
Kulish
,
Zap. Nauchn. Semin. LOMI
189
,
37
(
1991
).
7.
M.
Arik
,
N. M.
Atakishiyev
, and
K. B.
Wolf
,
J. Phys. A
32
,
L371
(
1999
).
8.
N. M.
Atakishiyev
and
K. B.
Wolf
,
J. Opt. Soc. Am. A
14
,
1467
(
1997
).
9.
N. M.
Atakishiyev
,
A. U.
Klimyk
, and
K. B.
Wolf
,
J. Phys. A
37
,
5569
(
2004
).
10.
G.
Gasper
and
M.
Rahman
,
Basic Hypergeometric Functions
(
Cambridge University Press
,
Cambridge
,
2004
).
11.
I. M.
Burban
and
A. U.
Klimyk
,
J. Phys. A
26
,
2139
(
1993
).
12.
N. M.
Atakishiyev
and
A. U.
Klimyk
,
Methods Funct. Anal. Topol.
8
,
1
(
2002
).
13.
R.
Koekoek
and
R. F.
Swarttouw
,
Delft University of Technology
Report No. 98-17; available from ftp.tudelft.nl.
14.
A. U.
Klimyk
and
I. I.
Kachurik
,
Commun. Math. Phys.
175
,
89
(
1996
).
15.
Yu. M.
Berezanskii
,
Expansions in Eigenfunctions of Selfadjoint Operators
(
American Mathematical Society
,
Providence, RI
,
1969
).
16.
T. H.
Koornwinder
, math.CA∕0601303.
17.
J.
Van der Jeugt
and
R.
Jagannathan
,
J. Math. Phys.
39
,
5062
(
1998
).
18.
N. Ja.
Vilenkin
and
A. U.
Klimyk
,
Representation of Lie Groups and Special Functions
(
Kluwer
,
Dordrecht
,
1991
), Vol.
1
.
19.
N. M.
Atakishiyev
,
Theor. Math. Phys.
58
,
166
(
1984
).
20.
A.
Erdelyi
,
W.
Magnus
,
F.
Oberhettinger
, and
F.
Tricomi
,
Higher Transcendental Functions
(
McGraw-Hill
,
New York
,
1953
), Vol.
1
, p.
85
.
You do not currently have access to this content.