This paper is the conclusion of a series that lays the groundwork for a structure and classification theory of second-order superintegrable systems, both classical and quantum, in conformally flat spaces. For two-dimensional and for conformally flat three-dimensional spaces with nondegenerate potentials we have worked out the structure of the classical systems and shown that the quadratic algebra always closes at order 6. Here we describe the quantum analogs of these results. We show that, for nondegenerate potentials, each classical system has a unique quantum extension. We also correct an error in an earlier paper in the series (that does not alter the structure results) and we elucidate the distinction between superintegrable systems with bases of functionally linearly independent and functionally linearly dependent symmetries.

1.
E. G.
Kalnins
,
J. M.
Kress
, and
W.
Miller
, Jr.
,
J. Math. Phys.
46
,
053509
(
2005
).
2.
E. G.
Kalnins
,
J. M.
Kress
, and
W.
Miller
, Jr.
,
J. Math. Phys.
46
,
053510
(
2005
).
3.
E. G.
Kalnins
,
J. M.
Kress
, and
W.
Miller
, Jr.
,
J. Math. Phys.
46
,
103507
(
2005
).
4.
E. G.
Kalnins
,
J. M.
Kress
, and
W.
Miller
, Jr.
,
J. Math. Phys.
47
,
043514
(
2006
).
5.
E. G.
Kalnins
,
W.
Miller
, Jr.
, and
G. S.
Pogosyan
,
J. Math. Phys.
47
,
033502
(
2006
).
6.
S.
Rauch-Wojciechowski
,
Phys. Lett.
95A
,
279
(
1983
).
N. W.
Evans
,
J. Math. Phys.
32
,
3369
(
1991
).
8.
J.
Friš
,
V.
Mandrosov
,
Ya. A.
Smorodinsky
,
M.
Uhlír
, and
P.
Winternitz
,
Phys. Lett.
16
,
354
(
1965
).
9.
J.
Friš
,
Ya. A.
Smorodinskii
,
M.
Uhlír
, and
P.
Winternitz
,
Sov. J. Nucl. Phys.
4
,
444
(
1967
).
10.
A. A.
Makarov
,
Ya. A.
Smorodinsky
,
Kh.
Valiev
, and
P.
Winternitz
,
Nuovo Cimento A
52
,
1061
(
1967
).
11.
F.
Calogero
,
J. Math. Phys.
10
,
2191
(
1969
).
12.
L. P.
Eisenhart
,
Riemannian Geometry
(
Princeton University Press
,
Princeton, NJ
,
1949
).
13.
W.
Miller
, Jr.
,
Symmetry and Separation of Variables
(
Addison-Wesley
,
Providence, RI
,
1977
).
14.
E. G.
Kalnins
and
W.
Miller
, Jr.
,
SIAM J. Math. Anal.
11
,
1011
(
1980
).
15.
W.
Miller
, Jr.
,
Proceedings of School and Workshop on Nonlinear Phenomena, Oaxtepec, Mexico, November 29-December 17, 1982
,
Lecture Notes in Physics
Vol.
189
(
Springer
,
New York
,
1983
).
16.
E. G.
Kalnins
,
Separation of Variables for Riemannian Spaces of Constant Curvature
,
Pitman Monographs and Surveys in Pure and Applied Mathematics Vol. 28
(
Longman
,
Essex
,
1986
), pp.
184
208
.
17.
W.
Miller
, Jr.
, in
Symmetries and Non-linear Phenomena
(
World Scientific
,
Singapore
,
1988
), pp.
188
221
.
18.
C.
Daskaloyannis
and
K.
Ypsilantis
,
J. Math. Phys.
47
,
042904
(
2006
).
19.
E. G.
Kalnins
,
W.
Miller
, Jr.
, and
G. S.
Pogosyan
,
J. Math. Phys.
37
,
6439
(
1996
).
20.
D.
Bonatos
,
C.
Daskaloyannis
, and
K.
Kokkotas
,
Phys. Rev. A
50
,
3700
(
1994
).
21.
C.
Daskaloyannis
,
J. Math. Phys.
42
,
1100
(
2001
).
22.
S. P.
Smith
,
Trans. Am. Math. Soc.
322
,
285
(
1990
).
23.
F.
Calogero
,
J. Math. Phys.
12
,
419
(
1971
).
24.
S.
Rauch-Wojciechowski
and
C.
Waksjö
,
J. Nonlinear Math. Phys.
12
,
535
(
2005
).
25.
J. T.
Horwood
,
R. G.
McLenaghan
, and
R. G.
Smirnov
,
Commun. Math. Phys.
259
,
679
(
2005
).
26.
C. P.
Boyer
,
E. G.
Kalnins
, and
W.
Miller
, Jr.
,
SIAM J. Math. Anal.
17
,
778
(
1986
).
27.
J.
Hietarinta
,
B.
Grammaticos
,
B.
Dorizzi
, and
A.
Ramani
,
Phys. Rev. Lett.
53
,
1707
(
1984
).
You do not currently have access to this content.