Coupled double well (ϕ4) one-dimensional potentials abound in both condensed matter physics and field theory. Here we provide an exhaustive set of exact periodic solutions of a coupled ϕ4 model in an external field in terms of elliptic functions (domain wall arrays) and obtain single domain wall solutions in specific limits. We also calculate the energy and interaction between solitons for various solutions. Both topological and nontopological (e.g., some pulse-like solutions in the presence of a conjugate field) domain walls are obtained. We relate some of these solutions to the recently observed magnetic domain walls in certain multiferroic materials and also in the field theory context wherever possible. Discrete analogs of these coupled models, relevant for structural transitions on a lattice, are also considered.

1.
H.
Schmid
,
Ferroelectrics
162
,
317
(
1994
);
N. A.
Spaldin
and
M.
Fiebig
,
Science
309
,
391
(
2005
).
[PubMed]
2.
T.
Kimura
,
T.
Goto
,
H.
Shintani
,
K.
Ishizaka
,
T.
Arima
, and
Y.
Tokura
,
Nature (London)
426
,
55
(
2003
).
3.
M.
Fiebig
,
Th.
Lottermoser
, and
R. V.
Pisarev
,
J. Appl. Phys.
93
,
8194
(
2003
).
4.
S. H.
Curnoe
and
I.
Munawar
,
Physica B
378–380
,
554
(
2006
).
5.
S.
Aubry
and
R.
Pick
,
Ferroelectrics
8
,
471
(
1973
).
6.
T.
Abel
and
R.
Siems
,
Ferroelectrics
153
,
177
(
1994
).
7.
A. A.
Kornyshev
,
D. A.
Kossakowski
, and
S.
Leikin
,
J. Chem. Phys.
97
,
6809
(
1992
).
8.
A. N.
Das
and
B.
Ghosh
,
J. Phys. C
16
,
1803
(
1983
).
9.
R.
Rajaraman
,
Phys. Rev. Lett.
42
,
200
(
1979
).
10.
C.
Matsuoka
and
K.
Nozaki
,
Phys. Lett. A
185
,
310
(
1994
).
11.
C. S.
Lai
,
Can. J. Phys.
58
,
443
(
1980
).
13.
X. Y.
Wang
,
B. C.
Xu
, and
P. L.
Taylor
,
Phys. Lett. A
173
,
30
(
1993
).
14.
X. W.
Huang
,
J. H.
Han
,
K. Y.
Qian
, and
W.
Qian
,
Phys. Lett. A
182
,
300
(
1993
).
15.
D.
Bazeia
,
M. J.
Dos Santos
, and
R. F.
Ribeiro
,
Phys. Lett. A
208
,
84
(
1995
).
16.
Y. J.
Zhu
and
S. Y.
Lou
,
Commun. Theor. Phys.
30
,
147
(
1998
).
18.
D. B.
Cao
,
Phys. Lett. A
296
,
27
(
2002
).
19.
D. S.
Li
and
H. Q.
Zhang
,
Acta Phys. Sin.
52
,
2373
(
2003
);
D. S.
Li
and
H. Q.
Zhang
,
Acta Phys. Sin.
52
,
2379
(
2003
).
20.
C. P.
Liu
,
Chaos, Solitons Fractals
20
,
619
(
2004
);
C. P.
Liu
,
Commun. Theor. Phys.
43
,
13
(
2005
).
21.
S. K.
Liu
,
Z. T.
Fu
,
S. D.
Liu
, and
Z. G.
Wang
,
Phys. Lett. A
323
,
415
(
2004
).
22.
Handbook of Mathematical Functions
, edited by
M.
Abramowitz
and
I. A.
Stegun
(
Dover
,
New York
,
1972
).
23.
A. V.
Zolotaryuk
,
A. V.
Savin
, and
E. N.
Economou
,
Phys. Rev. B
57
,
234
(
1998
).
24.
M. J.
Ablowitz
and
J. F.
Ladik
,
J. Math. Phys.
16
,
598
(
1975
);
M. J.
Ablowitz
and
J. F.
Ladik
,
J. Math. Phys.
17
,
1011
(
1976
).
25.
B. A.
Malomed
and
J.
Yang
,
Phys. Lett. A
302
,
163
(
2002
).
26.
F. R. N.
Nabarro
,
Theory of Crystal Dislocations
(
Dover
,
New York
,
1987
).
27.
O. M.
Braun
and
Yu. S.
Kivshar
,
Phys. Rev. B
43
,
1060
(
1991
).
28.
29.
A.
Khare
,
K. Ø.
Rasmussen
,
M. R.
Samuelsen
, and
A.
Saxena
,
J. Phys. A
38
,
807
(
2005
);
A.
Khare
,
K. Ø.
Rasmussen
,
M.
Salerno
,
M. R.
Samuelsen
, and
A.
Saxena
,
Phys. Rev. E
74
,
016607
(
2006
).
30.
F.
Cooper
,
A.
Khare
,
B.
Mihaila
, and
A.
Saxena
,
Phys. Rev. E
72
,
036605
(
2005
).
31.
A.
Khare
and
A.
Saxena
, nlin.SI/0609013
You do not currently have access to this content.