Colliding and intersecting hypersurfaces filled with matter (membranes) are studied in the Lovelock higher order curvature theory of gravity. Lovelock terms couple hypersurfaces of different dimensionalities, extending the range of possible intersection configurations. We restrict the study to constant curvature membranes in constant curvature anti-de Sitter (AdS) and dS background and consider their general intersections. This illustrates some key features which make the theory different from the Einstein gravity. Higher co-dimension membranes may lie at the intersection of co-dimension one hypersurfaces in Lovelock gravity; the hypersurfaces are located at the discontinuities of the first derivative of the metric, and they need not carry matter. The example of colliding membranes shows that general solutions can only be supported by (spacelike) matter at the collision surface, thus naturally conflicting with the dominant energy condition (DEC). The imposition of the DEC gives selection rules on the types of collision allowed. When the hypersurfaces do not carry matter, one gets a solitonlike configuration. Then, at the intersection one has a co-dimension two or higher membrane standing alone in AdS-vacuum space–time without conical singularities. Another result is that if the number of intersecting hypersurfaces goes to infinity the limiting space–time is free of curvature singularities if the intersection is put at the boundary of each AdS bulk.

1.
A selection of early and most recent references on brane-world type of proposals includes:
K.
Akama
,
Pregeometry
, in
Lecture Notes in Physics
Vol.
176
, Gauge Theory and Gravitation, Proceedings, Nara, 1982, edited by
K.
Kikkawa
,
N.
Nakanishi
, and
H.
Nariai
(
Springer
,
Berlin
,
1983
), pp.
267
271
;
V. A.
Rubakov
and
M. E.
Shaposhnikov
,
Phys. Lett.
125B
,
136
(
1983
);
N.
Arkani-Hamed
,
S.
Dimopoulos
, and
G.
Dvali
,
Phys. Lett. B
429
,
263
(
1998
);
N.
Arkani-Hamed
,
S.
Dimopoulos
, and
G.
Dvali
,
Phys. Rev. D
59
,
086004
(
1999
);
I.
Antoniadis
,
N.
Arkani-Hamed
,
S.
Dimopoulos
, and
G. R.
Dvali
,
Phys. Lett. B
436
,
257
(
1998
);
L.
Randall
and
R.
Sundrum
,
Phys. Rev. Lett.
83
,
3370
(
1999
);
L.
Randall
and
R.
Sundrum
,
Phys. Rev. Lett.
83
,
4690
(
1999
)
3.
D.
Lovelock
,
J. Math. Phys.
12
,
498
(
1971
).
4.
E.
Gravanis
and
S.
Willison
,
J. Math. Phys.
45
,
4223
(
2004
);
5.
E.
Gravanis
and
S.
Willison
, gr-qc∕0401062.
6.
C.
Teitelboim
and
J.
Zanelli
,
Class. Quantum Grav.
4
,
L125
(
1987
).
7.
Y.
Choquet-Bruhat
,
J. Math. Phys.
29
,
1891
(
1988
).
8.
D. G.
Boulware
and
S.
Deser
,
Phys. Rev. Lett.
55
,
2656
(
1985
);
[PubMed]
M.
Banados
,
C.
Teitelboim
, and
J.
Zanelli
,
Phys. Rev. Lett.
72
,
957
(
1994
);
[PubMed]
T.
Clunan
,
S. F.
Ross
, and
D. J.
Smith
,
Class. Quantum Grav.
21
,
3447
(
2004
);
9.
M.
Bañados
,
C.
Teitelboim
, and
J.
Zanelli
,
Phys. Rev. D
49
,
975
(
1994
).
10.
J.
Crisostomo
,
R.
Troncoso
, and
J.
Zanelli
,
Phys. Rev. D
62
,
0804013
(
2000
);
11.
J.
Madore
,
Class. Quantum Grav.
3
,
361
(
1986
);
N.
Deruelle
and
L.
Farina-Busto
,
Phys. Rev. D
41
,
3696
(
1990
).
12.
13.
A selection of the many references:
N. E.
Mavromatos
and
J.
Rizos
,
Phys. Rev. D
62
,
124004
(
2000
);
N.
Deruelle
and
T.
Dolezel
,
Phys. Rev. D
562
,
103502
(
2000
);
C.
Charmousis
and
J. F.
Dufaux
,
Class. Quantum Grav.
19
,
4671
(
2002
);
N. E.
Mavromatos
and
J.
Rizos
,
Int. J. Mod. Phys. A
18
,
57
(
2003
);
M. H.
Dehghani
, hep-th∕0404118.
14.
E.
Gravanis
and
S.
Willison
,
Phys. Lett. B
562
,
118
(
2003
);
15.
K.
Maeda
and
T.
Torii
,
Phys. Rev. D
69
,
024002
(
2004
);
16.
N.
Deruelle
and
J.
Madore
, gr-qc∕0305004.
17.
F.
Muller-Hoissen
,
Nucl. Phys. B
337
,
709
(
1990
);
T.
Verwimp
,
J. Math. Phys.
33
,
1431
(
1991
).
18.
T.
Dray
and
G.
’t Hooft
,
Class. Quantum Grav.
3
,
825
(
1986
);
A.
Neronov
,
J. High Energy Phys.
0111
,
007
(
2001
);
D.
Langlois
,
K.
Maeda
, and
D.
Wands
,
Phys. Rev. Lett.
88
,
181301
(
2002
);
[PubMed]
V. A.
Berezin
and
A. L.
Smirnov
, gr-qc∕0210084.
19.
J. E.
Kim
,
B.
Kyae
, and
H. M.
Lee
,
Phys. Rev. D
64
,
065011
(
2001
);
J. E.
Kim
and
H. M.
Lee
,
Phys. Rev. D
65
,
026008
(
2002
);
20.
H. M.
Lee
and
G.
Tasinato
,
JCAP
0404
,
009
(
2004
);
21.
I.
Navarro
and
J.
Santiago
,
J. High Energy Phys.
0404
,
062
(
2004
);
22.
N.
Arkani-Hamed
,
S.
Dimopoulos
,
G. R.
Dvali
, and
N.
Kaloper
,
Phys. Rev. Lett.
84
,
586
(
2000
);
[PubMed]
C.
Csaki
and
Y.
Shirman
,
Phys. Rev. D
61
,
024008
(
2000
);
A. E.
Nelson
,
Phys. Rev. D
63
,
087503
(
2001
);
23.
D. V.
Fursaev
and
S. N.
Solodukhin
,
Phys. Rev. D
52
,
2133
(
1995
);
G.
Hayward
and
J.
Luoko
,
Phys. Rev. D
42
,
4032
(
1990
).
24.
P.
Bostock
,
R.
Gregory
,
I.
Navarro
, and
J.
Santiago
,
Phys. Rev. Lett.
92
,
221601
(
2004
);
[PubMed]
25.
C.
Charmousis
and
R.
Zegers
, hep-th∕0502170;
26.
R.
Geroch
and
J.
Traschen
,
Phys. Rev. D
36
,
1017
(
1987
).
27.
D.
Garfinkle
,
Class. Quantum Grav.
16
,
4101
(
1999
);
28.
R.
Argurio
,
F.
Englert
, and
L.
Houart
,
Phys. Lett. B
398
,
61
(
1997
);
31.
A.
Iglesias
and
Z.
Kakushadze
,
Int. J. Mod. Phys. A
16
,
3603
(
2001
);
O.
Corradini
and
Z.
Kakushadze
,
Phys. Lett. B
506
,
167
(
2001
);
32.
R.
Penrose
,
The Geometry of Impulsive Gravitatioanl Waves; General Relativity
, edited by
L.
O’Reifeartaigh
(
Clarendon
,
Oxford
,
1972
), pp.
101
108
.
33.
S. W.
Hawking
and
G. F. R.
Ellis
,
The Large Scale Structure of Space-time
, (
Cambridge University Press
,
New York
,
1973
).
34.
E.
Witten
,
Adv. Theor. Math. Phys.
2
,
253
(
1998
);
35.
J. M.
Maldacena
,
Adv. Theor. Math. Phys.
2
,
231
(
1998
);
J. M.
Maldacena
,
Int. J. Theor. Phys.
38
,
1113
(
1998
);
36.
R. M.
Wald
,
General Relativity
(
University of Chicago Press
,
Chicago
,
1984
).
37.
T.
Eguchi
,
P. B.
Gilkey
, and
A. J.
Hanson
,
Phys. Rep.
66
,
213
(
1980
).
38.
C. R. F.
Maunder
,
Algebraic Topology
(
Cambridge University Press
,
New York
,
1980
).
39.
C.
Csaki
and
Y.
Shirman
,
Phys. Rev. D
61
,
024008
(
2000
);
40.
F.
Müller-Hoissen
,
Nucl. Phys. B
346
,
235
(
1990
).
41.
M.
Bañados
,
C.
Teitelboim
, and
J.
Zanelli
,
Lovelock-Born-Infeld Theory of Gravity
, in J. J. Giambiagi Festschrift, La Plata, May 1990, edited by
H.
Falomir
,
R. R. E.
Gamboa
,
P.
Leal
, and
F.
Schaposnik
, (
World Scientific
,
Singapore
,
1991
).
42.
43.
N.
Kaloper
,
J. High Energy Phys.
0405
,
061
(
2004
);
You do not currently have access to this content.