We construct Gepner models in terms of coset conformal field theories and compute their twisted equivariant K-theories. These classify the D-brane charges on the associated geometric backgrounds and therefore agree with the topological K-theories. We show this agreement for various cases, in particular, the Fermat quintic.

1.
R.
Minasian
and
G. W.
Moore
, “
K-theory and Ramond-Ramond charge
,”
J. High Energy Phys.
11
,
002
(
1997
).
2.
E.
Witten
, “
D-branes and K-theory
,”
J. High Energy Phys.
12
,
019
(
1998
).
3.
G.
Moore
, “
K-theory from a physical perspective
” http://arXiv.org/abs/hep-th/0304018.
4.
A.
Recknagel
and
V.
Schomerus
, “
D-branes in Gepner models
,”
Nucl. Phys. B
531
,
185
(
1998
).
5.
A.
Recknagel
, “
Permutation branes
,”
J. High Energy Phys.
04
,
041
(
2003
).
6.
A.
Recknagel
, “
On permutation branes
,”
Fortschr. Phys.
51
,
824
(
2003
).
7.
I.
Brunner
and
M. R.
Gaberdiel
, “
Matrix factorisations and permutation branes
,”
J. High Energy Phys.
07
,
012
(
2005
).
8.
I.
Brunner
and
M. R.
Gaberdiel
, “
The matrix factorisations of the D-model
,”
J. Phys. A
38
,
7901
(
2005
).
9.
H.
Enger
,
A.
Recknagel
, and
D.
Roggenkamp
, “
Permutation branes and linear matrix factorisations
,” hep-th/0508053.
10.
S.
Fredenhagen
and
T.
Quella
, “
Generalised permutation branes
,”
J. High Energy Phys.
11
,
004
(
2005
).
11.
C.
Caviezel
,
S.
Fredenhagen
, and
M. R.
Gaberdiel
, “
The RR charges of A-type Gepner models
,” hep-th/0511078.
12.
S.
Fredenhagen
and
V.
Schomerus
, “
Branes on group manifolds, gluon condensates, and twisted K-theory
,”
J. High Energy Phys.
04
,
007
(
2001
).
13.
P.
Bouwknegt
and
V.
Mathai
, “
D-branes, B-fields and twisted K-theory
,”
J. High Energy Phys.
0003
,
007
(
2000
).
14.
P.
Bouwknegt
,
A. L.
Carey
,
V.
Mathai
,
M. K.
Murray
, and
D.
Stevenson
, “
Twisted K-theory and K-theory of bundle gerbes
,”
Commun. Math. Phys.
228
,
17
(
2002
).
15.
J. M.
Maldacena
,
G. W.
Moore
, and
N.
Seiberg
, “
Geometrical interpretation of D-branes in gauged WZW models
,”
J. High Energy Phys.
07
,
046
(
2001
).
16.
J. M.
Maldacena
,
G. W.
Moore
, and
N.
Seiberg
, “
D-brane instantons and K-theory charges
,”
J. High Energy Phys.
11
,
062
(
2001
).
17.
V.
Braun
, “
Twisted K-theory of Lie groups
,”
J. High Energy Phys.
03
,
029
(
2004
).
18.
S.
Fredenhagen
, “
Organizing boundary rg flows
,”
Nucl. Phys. B
660
,
436
(
2003
).
19.
S.
Schafer-Nameki
, “
D-branes in N=2 coset models and twisted equivariant K-theory
,” hep-th/0308058.
20.
M. R.
Gaberdiel
and
T.
Gannon
, “
The charges of a twisted brane
,”
J. High Energy Phys.
01
,
018
(
2004
).
21.
M. R.
Gaberdiel
and
T.
Gannon
, “
D-brane charges on non-simply connected groups
,”
J. High Energy Phys.
04
,
030
(
2004
).
22.
V.
Braun
and
S.
Schafer-Nameki
, “
Supersymmetric WZW models and twisted K-theory of SO(3)
,” hep-th/0403287.
23.
S.
Fredenhagen
, “
D-brane charges on SO(3)
,” http://arXiv.org/abs/hep-th/0404017.
24.
M. R.
Gaberdiel
,
T.
Gannon
, and
D.
Roggenkamp
, “
The D-branes of SU(n)
,”
J. High Energy Phys.
07
,
015
(
2004
).
25.
M. R.
Gaberdiel
,
T.
Gannon
, and
D.
Roggenkamp
, “
The coset D-branes of SU(n)
,”
J. High Energy Phys.
10
,
047
(
2004
).
26.
S.
Schafer-Nameki
, “
K-theoretical boundary rings in N=2 coset models
,”
Nucl. Phys. B
706
,
531
(
2005
).
27.
D. S.
Freed
, “
The Verlinde algebra is twisted equivariant K-theory
,”
Turkish J. Math.
25
,
159
(
2001
).
28.
D. S.
Freed
,
M. J.
Hopkins
, and
C.
Teleman
, “
Twisted equivariant K-theory with complex coefficients
,” http://arXiv.org/abs/math.AT/0206257. Volume 3 contains relevant changes.
29.
D. S.
Freed
,
M. J.
Hopkins
, and
C.
Teleman
, “
Twisted K-theory and loop group representations
,” http://arXiv.org/abs/math.AT/0312155.
30.
V.
Braun
, “K-theory torsion,” hep-th/0005103.
31.
I.
Brunner
and
J.
Distler
, “
Torsion D-branes in nongeometrical phases
,”
Adv. Theor. Math. Phys.
5
,
265
(
2002
).
32.
I.
Brunner
,
J.
Distler
, and
R.
Mahajan
, “
Return of the torsion D-branes
,”
Adv. Theor. Math. Phys.
5
,
311
(
2002
).
33.
I.
Brunner
,
M. R.
Douglas
,
A. E.
Lawrence
, and
C.
Romelsberger
, “
D-branes on the quintic
,”
J. High Energy Phys.
08
,
015
(
2000
).
34.
M. R.
Gaberdiel
and
S.
Schafer-Nameki
, “
D-branes in an asymmetric orbifold
,”
Nucl. Phys. B
B654
,
177
(
2003
).
35.
A.
Kapustin
and
L.
Rozansky
, “
On the relation between open and closed topological strings
,”
Commun. Math. Phys.
252
,
393
(
2004
).
36.
F.
Gliozzi
,
J.
Scherk
, and
D. I.
Olive
, “
Supersymmetry, supergravity theories and the dual spinor model
,”
Nucl. Phys. B
122
,
253
(
1977
).
37.
D.
Gepner
, “
Space-time supersymmetry in compactified string theory and superconformal models
,”
Nucl. Phys. B
296
,
757
(
1988
).
38.
D.
Gepner
and
Z.-a.
Qiu
, “
Modular invariant partition functions for parafermionic field theories
,”
Nucl. Phys. B
285
423
, (
1987
).
39.
Z.-a.
Qiu
, “
Modular invariant partition functions for N=2 superconformal field theories
,”
Phys. Lett. B
198
,
497
(
1987
).
40.
S.
Fredenhagen
and
V.
Schomerus
, “
On boundary RG-flows in coset conformal field theories
,”
Phys. Rev. D
67
,
085001
(
2003
).
41.
C.
Teleman
, “
K-theory and the moduli space of bundles on a surface and deformations of the Verlinde algebra
,” in
Topology, Geometry and Quantum Field Theory
, Vol.
308
of London Math. Soc. Lecture Note Ser. (
Cambridge University Press
, Cambridge,
2004
), pp.
358
378
.
42.
K.
Wendland
, “
Moduli spaces of unitary conformal field theories
.” Ph.D. thesis,
Friedrich-Wilhelms Universität Bonn
,
2000
.
43.
A.
Kapustin
and
Y.
Li
, “
D-branes in topological minimal models: The Landau-Ginzburg approach
,”
J. High Energy Phys.
07
,
045
(
2004
).
44.
I.
Brunner
,
K.
Hori
,
K.
Hosomichi
, and
J.
Walcher
, “
Orientifolds of Gepner models
,” hep-th/0401137.
45.
E.
Witten
, “
Phases of N=2 theories in two dimensions
,”
Nucl. Phys. B
403
,
159
(
1993
).
46.
D.
Orlov
, “
Triangulated categories of singularities and d-branes in Landau-Ginzburg models
,” math.AG/0302304.
47.
K.
Hori
, “
Boundary RG flows of N=2 minimal models
,” hep-th/0401139.
48.
H.
Knörrer
, “
Cohen-Macaulay modules on hypersurface singularities. I
,”
Invent. Math.
88
,
153
(
1987
).
49.
J.
Walcher
, “
Stability of Landau-Ginzburg branes
,”
J. Math. Phys.
46
,
082305
(
2005
).
50.
W.
Nahm
and
K.
Wendland
, “
A hiker’s guide to K3. Aspects of N=(4,4) superconformal field theory with central charge c=6
,”
Commun. Math. Phys.
216
,
85
(
2001
).
51.
K.
Wendland
, “
Orbifold constructions of K3: A link between conformal field theory and geometry
,” in Orbifolds in Mathematics and Physics, Madison, WI, 2001, Vol.
310
of Contemp. Math. (
Amer. Math. Soc.
,
Providence, RI
,
2002
), pp.
333
358
.
52.
W.
Nahm
and
K.
Wendland
, “
Mirror symmetry on Kummer type K3 surfaces
,”
Commun. Math. Phys.
243
,
557
(
2003
).
53.
J.
Fuchs
,
A.
Klemm
,
C.
Scheich
, and
M. G.
Schmidt
, “
Spectra and symmetries of Gepner models compared to Calabi- Yau compactifications
,”
Ann. Phys.
204
,
1
(
2004
).
You do not currently have access to this content.