We present the novel topological tensor currents to describe the infinitesimal thin higher-dimensional topological defects in the local SO(n) gauge theory. The topological quantization of defects and the inner structure of the currents are obtained. As the generalization of Nielsen-Olesen local U(1) field theory for Nambu string, the local SO(n) gauge-invariant Lagrangian and the motion equation of the higher-dimensional topological defects are derived. Moreover, for closed defects, we study their important topological configuration, i.e., the higher-dimensional knotlike structures. Using the topological tensor currents and their preimages, we construct a series of metric independent integrals and prove their gauge independence. Similar to the helicity integral characterizing one-dimensional knotlike vortex filament, these topological invariants are evaluated to the generalized linking numbers of higher-dimensional knotlike defects.

1.
G.
Friedel
,
Dislocations
(
Pergamon Press
, Oxford,
1964
).
2.
F.
Nabarro
,
Theory of Crystal Dislocations
(
Clarendon Press
, Oxford,
1967
).
3.
D. R.
Nelson
, in
Phase Transitions and Critical Phenomena
, edited by
C.
Domb
and
J.
Lebowitz
(
Academic Press
, New York,
1983
).
4.
K. J.
Strandburg
,
Rev. Mod. Phys.
60
,
161
(
1988
).
6.
R.
Rajaraman
,
Solitons and Instantons
(
North-Holland
, Amsterdam,
1982
).
7.
E. B.
Bogomolny
,
Solitons and Particles
, edited by
C.
Rebbi
and
G.
Soliani
(
World Scientific
, Singapore,
1984
).
8.
S.
Coleman
,
Classical Lumps and Their Quantum Descendants
, in New Phenomena in Subnuclear Physics, edited by
A.
Zichichi
(
Plenum
, New York,
1976
).
9.
M. B.
Hindmarsh
and
T. W. B.
Kibble
,
Rep. Prog. Phys.
58
,
477
(
1995
).
A.
Vilenkin
and
E. P. S.
Shellard
,
Cosmic Strings and other Topological Defects
(
Cambridge University Press
, Cambridge,
1994
).
12.
A. A.
De Laix
,
L. M.
Krauss
, and
T.
Vachaspati
,
Phys. Rev. Lett.
79
,
1968
(
1997
).
13.
A. C.
Davis
and
R.
Brandenberger
,
in Formation and Interaction of Topological Defects
, Vol.
349
of NATO Advanced Study of Institute, Series B: Physics (
Plenum
, New York,
1995
).
14.
N. D.
Mermin
,
Rev. Mod. Phys.
51
,
591
(
1979
).
15.
P. W.
Anderson
,
Basic Notions of Condensed Matter Physics
(
Benjamin
, London,
1984
).
16.
B. I.
Halperin
,
in Physics of Defects
, edited by
R.
Balian
 et al. (
North-Holland
, Amsterdam,
1981
).
17.
F.
Liu
and
G. F.
Mazenko
,
Phys. Rev. B
46
,
5963
(
1992
).
18.
Y. S.
Duan
,
H.
Zhang
, and
L. B.
Fu
,
Phys. Rev. E
59
,
528
(
1999
).
19.
Y. S.
Duan
and
H.
Zhang
,
Phys. Rev. E
60
,
2568
(
1999
).
20.
Y.
Jiang
and
Y. S.
Duan
,
J. Math. Phys.
24
,
6463
(
2000
).
21.
Y. S.
Duan
, Report No. SLAC-PUB-3301/84,
1984
;
Y. S.
Duan
and
J. C.
Liu
, Proceedings of Johns Hopkins Workshop 11th, edited by
Y. S.
Duan
 et al. (
1987
).
22.
P. K.
Townsend
,
in Black Hole, Membrane, Wormholes and Superstrings
, edited by
S.
Kalara
and
D.
Nanopoulos
(
World Scientific
, Singapore,
1993
), pp.
85
96
;
P. K.
Townsend
,
Phys. Lett. B
202
,
53
(
1988
).
23.
G. T.
Horowitz
and
A.
Strominger
,
Nucl. Phys. B
360
,
197
(
1991
).
24.
J.
Dai
,
R.
Leigh
, and
J.
Polchinski
,
Mod. Phys. Lett. A
4
,
2073
(
1989
).
25.
M. J.
Duff
and
J. X.
Lu
,
Nucl. Phys. B
354
,
141
(
1991
);
M. J.
Duff
and
J. X.
Lu
,
Phys. Lett. B
273
,
409
(
1991
).
26.
N. A.
Hamed
,
S.
Dimopolous
, and
G.
Dvali
,
Phys. Lett. B
429
,
263
(
1998
).
27.
L.
Randall
and
R.
Sundrum
,
Phys. Rev. Lett.
83
,
3370
(
1999
).
28.
See a recent review and references therein,
R.
Dick
,
Class. Quantum Grav.
18
,
R1
R24
(
2001
).
29.
M. J.
Duff
,
R. R.
Khuri
, and
J. X.
Lu
,
Phys. Rep.
259
,
213
(
1995
).
30.
A.
Aurilia
,
A.
Smailagic
, and
E.
Spallucci
,
Phys. Rev. D
47
,
2536
(
1993
).
31.
M.
Sakellariadou
, Invited lectures in the NATO ASI/ COSLAB (ESF) School “Patterns of symmetry breaking,” September 2002 (Cracow);
M.
Sakellariadou
, hep-ph/0212365
32.
Y. S.
Duan
,
L. B.
Fu
, and
G.
Jia
,
J. Math. Phys.
41
,
4379
(
2000
).
33.
34.
T.
Gherghetta
,
E.
Roessl
, and
M.
Shaposhnikov
,
Phys. Lett. B
491
,
353
(
2000
).
T.
Gherghetta
and
M.
Shaposhnikov
,
Phys. Rev. Lett.
85
,
240
(
2000
).
[PubMed]
35.
L.
Faddeev
and
A. J.
Niemi
,
Phys. Rev. Lett.
82
,
1624
(
1999
);
L.
Faddeev
and
A. J.
Niemi
,
Phys. Lett. B
525
,
195
(
2002
).
36.
R.
Dilao
and
R.
Schiappa
,
Phys. Lett. B
404
,
57
(
1997
);
R.
Dilao
and
R.
Schiappa
,
Phys. Lett. B
427
,
26
(
1998
).
37.
E.
Babaev
,
L.
Faddeev
, and
A. J.
Niemi
,
Phys. Rev. B
65
,
100512
(
2002
);
E.
Babaev
,
L.
Faddeev
, and
A. J.
Niemi
,
Phys. Rev. Lett.
88
,
177002
(
2002
).
[PubMed]
38.
A. M.
Saitta
 et al.,
Nature (London)
399
,
46
(
1999
).
39.
L.
Faddeev
and
A. J.
Niemi
,
Nature (London)
387
,
58
(
1997
).
40.
A. A.
Abrikosov
,
Sov. Phys. JETP
32
,
1442
(
1957
).
41.
H. B.
Nielsen
and
P.
Olesen
,
Nucl. Phys. B
61
,
45
(
1973
).
42.
A.
Belavin
,
A. M.
Polyakov
,
A. S.
Schwarz
, and
Y. S.
Tyupkin
,
Phys. Lett.
59B
,
85
(
1975
).
43.
A. M.
Polyakov
,
JETP Lett.
20
,
194
(
1974
).
44.
H. B.
Nielsen
and
P.
Olesen
,
Nucl. Phys. B
57
,
367
(
1973
).
45.
Y.
Nambu
, Lectures at the Copenhagen Summer Symposium,
1970
.
46.
H. K.
Moffatt
,
J. Fluid Mech.
106
,
27
(
1969
);
H. K.
Moffatt
,
J. Fluid Mech.
159
,
359
(
1985
).
47.
D.
Hesteces
and
G.
Sobczyk
,
Clifford Algebra to Geometric Calculus
(
Reidel
, Dordrecht,
1984
);
F.
Chinea
,
Gen. Relativ. Gravit.
21
,
21
(
1989
).
48.

We specially note γ=1 and Iab=ϵab in SO(2) case.

49.
D. H.
Tchrakian
,
J. Math. Phys.
21
,
166
(
1980
);
D. H.
Tchrakian
,
Phys. Lett.
150B
,
360
(
1985
).
50.

Rigorously speaking, the boundary condition for ANO vortex is the vanishing covariant derivative of Higgs field which consists with the vanishing gauge fields. See a recent review (Ref. 64). We adopt only the vanishing gauge fields for even-n case because which may involve a large class of models of various defects, e.g., the instantons (Ref. 42).

51.
S. S.
Chern
,
W. H.
Chen
, and
K. S.
Lan
,
Lectures on Differential Geometry
(
World Scientific
, Singapore,
1999
).
52.

We focused on the topological properties of defects which are not sensitive to the thickness, so it is safe to regard the defects as infinitesimal thin objects.

53.
Y. S.
Duan
,
S. L.
Zhang
and
L. C.
Jiang
,
Gen. Relativ. Gravit.
24
,
1033
(
1992
).
54.
M.
Atiyah
,
The Geometry and Physics of Knots
(
Cambridge University Press
, Cambridge,
1990
).
55.

The subtle relation between helicity and the Hopf invariant has been derived by Arnold (Ref. 65).

56.
S. P.
Novikov
,
Russ. Math. Surveys
39
,
113
(
1984
).
57.
H.
Bodecker
and
G.
Hornig
,
Phys. Rev. Lett.
92
,
3
(
2004
).
58.
D.
Birmingham
,
M.
Blau
,
M.
Rakowski
, and
G.
Thompson
,
Phys. Rep.
209
,
129
(
1991
).
59.
M.
Blau
and
G.
Thompson
,
Ann. Phys.
205
,
103
(
1991
).
60.
G. T.
Horowitz
and
M.
Srednicki
,
Chem. Phys.
130
,
83
(
1989
).
61.
I.
Oda
and
S.
Yahikozawa
,
Phys. Lett. B
238
,
272
(
1990
).
62.
B.
Zumino
,
Y. S.
Wu
, and
A.
Zee
,
Nucl. Phys. B
239
,
477
(
1984
).
63.
For a recent review, see
A.
Pérez-Lorenzana
,
J. Phys.: Conf. Ser.
18
,
224
(
2005
);
A.
Pérez-Lorenzana
, hep-ph/0503177, and the references therein.
64.
G.
’t Hooft
and
F.
Bruckmann
, hep-th/0010225.
65.
V. I.
Arnol’d
, (in Russian), Proceedings Summer School in Differential Equations, Ereran, Armenian SSR Acad. Sci. (
1974
)
V. I.
Arnol’d
[
Sel. Math. Sov.
5
,
327
(
1986
)].
You do not currently have access to this content.