Finite quantum systems in which the position and momentum take values in the Galois field GF(p), are studied. Ideas from the subject of field extension are transferred in the context of quantum mechanics. The Frobenius automorphisms in Galois fields lead naturally to the “Frobenius formalism” in a quantum context. The Hilbert space splits into “Frobenius subspaces” which are labeled with the irreducible polynomials associated with the ypy. The Frobenius maps transform unitarily the states of a Galois quantum system and leave fixed all states in some of its Galois subsystems (where the position and momentum take values in subfields of GF(p)). An analytic representation of these systems in the -sheeted complex plane shows deeper links between Galois theory and Riemann surfaces.

1.
H.
Weyl
,
Theory of Groups and Quantum Mechanics
(
Dover
, New York,
1950
).
2.
J.
Schwinger
,
Proc. Natl. Acad. Sci. U.S.A.
46
,
570
(
1960
);
[PubMed]
J.
Schwinger
,
Quantum Kinematics and Dynamics
(
Benjamin
, New York,
1970
).
3.
A.
Vourdas
,
Rep. Prog. Phys.
67
,
267
(
2004
).
4.
J. W. P.
Hirschfeld
,
Projective Geometries Over Finite Fields
(
Oxford University Press
, Oxford,
1979
);
L. M.
Batten
,
Combinatorics of Finite Geometries
(
Cambridge University Press
, Cambridge,
1997
);
R.
Lidl
and
H.
Niederreiter
,
Finite Fields
(
Cambridge University Press
, Cambridge,
1997
);
A.
Terras
,
Fourier Analysis on Finite Groups and Applications
(
Cambridge University Press
, Cambridge,
1999
).
6.
M.
Neuhauser
,
J. Lie Theory
12
,
15
(
2002
).
A.
Vourdas
,Acta Appl. Math (quant-phys/0605054).
8.
W.
Wootters
and
B. D.
Fields
,
Ann. Phys. (N.Y.)
191
,
363
(
1989
);
K.
Gibbons
,
M. J.
Hoffman
, and
W.
Wootters
,
Phys. Rev. A
70
,
062101
(
2004
).
9.
S.
Bandyopadhyay
,
P. O.
Boykin
,
V.
Roychowdhury
, and
F.
Vatan
,
Algorithmica
34
,
512
(
2002
).
10.
A. O.
Pittenger
and
M. H.
Rubin
,
Linear Algebr. Appl.
390
,
255
(
2004
);
A. O.
Pittenger
and
M. H.
Rubin
,
J. Phys. A
38
,
6005
(
2005
).
11.
A.
Klappenecker
and
M.
Rotteler
,
Lect. Notes Comput. Sci.
2948
,
137
(
2004
).
12.
P.
Wocjan
and
T.
Beth
,
Quantum Inf. Comput.
5
,
181
(
2005
).
13.
A.
Klimov
,
L.
Sanchez-Soto
, and
H.
de Guise
,
J. Phys. A
38
,
2747
(
2005
);
A.
Klimov
,
L.
Sanchez-Soto
, and
H.
de Guise
,
J. Opt. B: Quantum Semiclassical Opt.
7
,
283
(
2005
);
J. L.
Romero
,
G.
Bjork
,
A. B.
Klimov
, and
L. L.
Sanchez-Soto
,
Phys. Rev. A
72
,
062310
(
2005
).
14.
M.
Saniga
,
M.
Planat
, and
H.
Rosu
,
J. Opt. B: Quantum Semiclassical Opt.
6
,
L19
(
2004
);
M.
Saniga
,
M.
Planat
, and
H.
Rosu
,
J. Phys. A
39
,
435
(
2006
).
15.
M. R.
Kibler
and
M.
Planat
,
Int. J. Mod. Phys. B
20
,
1802
(
2006
);
M. R.
Kibler
and
M.
Planat
,
Int. J. Mod. Phys. B
20
,
1792
(
2006
);
S.
Colin
,
J.
Corbett
,
T.
Durt
, and
D.
Gross
,
J. Opt. B: Quantum Semiclassical Opt.
7
,
S778
(
2005
).
17.
E. F.
Calvao
,
Phys. Rev. A
71
,
042302
(
2005
).
18.
I.
Bengtsson
and
A.
Ericsson
,
Open Syst. Inf. Dyn.
12
,
107
(
2005
).
19.
B. G.
Englert
and
Y.
Aharonov
,
Phys. Lett. A
284
,
1
(
2001
).
20.
A.
Hayashi
,
M.
Horibe
, and
T.
Hashimoto
,
Phys. Rev. A
71
,
052331
(
2005
).
21.
T.
Durt
,
Int. J. Mod. Phys. B
20
,
1742
(
2006
).
22.
A.
Asikhmin
and
E.
Knill
,
IEEE Trans. Inf. Theory
47
,
3065
(
2001
).
23.
24.
E.
Reyssat
in
From Number Theory to Physics
, edited by
M.
Waldschmidt
,
P.
Moussa
,
J. M.
Louck
, and
C.
Itzykson
(
Springer
, Berlin,
1992
).
26.
A.
Vourdas
,
J. Math. Phys.
35
,
2687
(
1994
).
You do not currently have access to this content.