We construct a sheaf-theoretic representation of quantum probabilistic structures, in terms of covering systems of Boolean measure algebras. These systems coordinatize quantum states by means of Boolean coefficients, interpreted as Boolean localization measures. The representation is based on the existence of a pair of adjoint functors between the category of presheaves of Boolean measure algebras and the category of quantum measure algebras. The sheaf-theoretic semantic transition of quantum structures shifts their physical significance from the orthoposet axiomatization at the level of events, to the sheaf-theoretic gluing conditions at the level of Boolean localization systems.
REFERENCES
1.
V. S.
Varadarajan
, Geometry of Quantum Mechanics
(Van Nostrand
, Princeton, NJ, 1968
), Vol. 1
.2.
G.
Birkhoff
and J.
von Neumann
, Ann. Math.
37
, 823
(1936
).3.
4.
F. W.
Lawvere
and S. H.
Schanuel
, Conceptual Mathematics
(Cambridge University Press
, Cambridge, 1997
).5.
6.
7.
8.
M.
Artin
, A.
Grothendieck
, and J. L.
Verdier
, Theorie de Topos et Cohomologie etale des Schemas
, Springer Lecture Notes in Mathematics Vols. 269 and 270
(Springer
, Berlin, 1972
).9.
J.
Butterfield
and C. J.
Isham
, Int. J. Theor. Phys.
37
, 2669
(1998
).10.
J.
Butterfield
and C. J.
Isham
, Int. J. Theor. Phys.
38
, 827
(1999
).11.
12.
13.
14.
15.
F. W.
Lawvere
, Proceedings of the Logic Colloquium in Bristol
(North-Holland
, Amsterdam, 1975
).16.
A.
Mallios
, Maxwell Fields, Modern Differential Geometry in Gauge Theories
(Birkhäuser
, Boston, 2005
), Vol. 1
.17.
A.
Mallios
, Yang-Mills Fields, Modern Differential Geometry in Gauge Theories
(Birkhäuser
, Boston, to be published), Vol. 2
.18.
A.
Mallios
, Geometry of Vector Sheaves, An Axiomatic Approach to Differential Geometry
(Kluwer Academic
, Dordrecht, 1998
), Vols. 1, 2
.19.
H. F.
de Groote
, math-ph/0110035.20.
H. F.
de Groote
, math-ph/0509020.21.
H. F.
de Groote
, math-ph/0509075.22.
H. F.
de Groote
, math-ph/0601011.23.
24.
25.
26.
27.
28.
E.
Zafiris
, Int. J. Theor. Phys.
(online first) (2006
);© 2006 American Institute of Physics.
2006
American Institute of Physics
You do not currently have access to this content.