For a weakly pseudo-Hermitian linear operator, we give a spectral condition that ensures its pseudo-Hermiticity. This condition is always satisfied whenever the operator acts in a finite-dimensional Hilbert space. Hence weak pseudo-Hermiticity and pseudo-Hermiticity are equivalent in finite-dimensions. This equivalence extends to a much larger class of operators. Quantum systems whose Hamiltonian is selected from among these operators correspond to pseudo-Hermitian quantum systems possessing certain symmetries.

1.
A.
Mostafazadeh
,
J. Math. Phys.
43
,
205
(
2002
).
2.
A.
Mostafazadeh
,
J. Math. Phys.
43
,
2814
(
2002
);
A.
Mostafazadeh
,
J. Math. Phys.
43
,
3944
(
2002
).
A.
Blasi
,
G.
Scolarici
, and
L.
Solombrino
,
37
,
4335
(
2004
);
A.
Mostafazadeh
and
A.
Batal
,
J. Phys. A
37
,
11645
(
2004
);
S.
Albeverio
and
S.
Kuzhel
,
Lett. Math. Phys.
67
,
223
(
2004
);
A.
Mostafazadeh
,
J. Phys. A
38
,
8185
(
2005
);
H. F.
Jones
and
J.
Mateo
,
Phys. Rev. D
73
,
085002
(
2006
);
Y.
Ben-Aryeh
and
R.
Barak
,
Phys. Lett. A
351
,
388
(
2006
);
D.
Krejcirik
,
H.
Bila
, and
M.
Znojil
,
J. Phys. A
39
,
10143
(
2006
).
4.
L.
Solombrino
,
J. Math. Phys.
43
,
5439
(
2002
).
5.
B.
Bagchi
and
C.
Quesne
,
Phys. Lett. A
301
,
173
(
2002
).
6.
A.
Mostafazadeh
,
J. Math. Phys.
44
,
974
(
2003
).
7.
M.
Znojil
,
Phys. Lett. A
353
,
463
(
2006
).
8.
A.
Mostafazadeh
,
Class. Quantum Grav.
20
,
155
(
2003
);
A.
Mostafazadeh
,
Ann. Phys. (N.Y.)
309
,
1
(
2004
);
A.
Mostafazadeh
and
F.
Zamani
,
Ann. Phys. (N.Y.)
321
,
2183
(
2006
);
A.
Mostafazadeh
and
F.
Zamani
,
Ann. Phys. (N.Y.)
321
,
2210
(
2006
).
9.
A.
Mostafazadeh
,
J. Math. Phys.
47
,
072103
(
2006
).
10.
A.
Mostafazadeh
,
Czech. J. Phys.
53
,
1079
(
2003
).
11.
M.
Reed
and
B.
Simon
,
Functional Analysis
(
Academic
,
San Diego
,
1980
), Vol.
1
.
12.
A. N.
Kolmogorov
and
S. V.
Fomin
,
Introductory Real Analysis
(
Dover
,
New York
,
1975
).
13.
P. D.
Hislop
and
I. M.
Sigal
,
Introduction to Spectral Theory
(
Springer
,
New York
,
1996
).
14.
M.
Schechter
,
Principles of Functional Analysis
(
American Mathematical Society
,
Providence
,
2002
).
15.
P. R.
Halmos
,
A Hilbert Space Problem Book
(
Springer
,
New York
,
1982
).
16.
K.
Yosida
,
Functional Analysis
(
Springer
,
Berlin
,
1995
).
17.
T.
Kato
,
Perturbation Theory for Linear Operators
(
Springer
,
Berlin
,
1995
).
18.
R. A.
Horn
and
C. R.
Johnson
,
Matrix Analysis
(
Cambridge University Press
,
Cambridge
,
1999
).
19.
F. G.
Scholtz
,
H. B.
Geyer
, and
F. J. W.
Hahne
,
Ann. Phys. (N.Y.)
213
,
74
(
1992
).
You do not currently have access to this content.