For a weakly pseudo-Hermitian linear operator, we give a spectral condition that ensures its pseudo-Hermiticity. This condition is always satisfied whenever the operator acts in a finite-dimensional Hilbert space. Hence weak pseudo-Hermiticity and pseudo-Hermiticity are equivalent in finite-dimensions. This equivalence extends to a much larger class of operators. Quantum systems whose Hamiltonian is selected from among these operators correspond to pseudo-Hermitian quantum systems possessing certain symmetries.
REFERENCES
1.
A.
Mostafazadeh
, J. Math. Phys.
43
, 205
(2002
).2.
A.
Mostafazadeh
, J. Math. Phys.
43
, 2814
(2002
);A.
Mostafazadeh
, J. Math. Phys.
43
, 3944
(2002
).3.
Z.
Ahmed
, Phys. Lett. A
290
, 19
(2001
);A.
Mostafazadeh
, J. Phys. A
36
, 7081
(2003
);A.
Blasi
, G.
Scolarici
, and L.
Solombrino
, 37
, 4335
(2004
);A.
Mostafazadeh
and A.
Batal
, J. Phys. A
37
, 11645
(2004
);A.
Mostafazadeh
, J. Phys. A
38
, 3213
(2005
);A.
Mostafazadeh
, J. Phys. A
38
, 6557
(2005
);H. F.
Jones
, J. Phys. A
38
, 1741
(2005
);H. F.
Jones
and J.
Mateo
, Phys. Rev. D
73
, 085002
(2006
);A.
Mostafazadeh
, J. Phys. A
39
, 10171
(2006
);4.
L.
Solombrino
, J. Math. Phys.
43
, 5439
(2002
).5.
B.
Bagchi
and C.
Quesne
, Phys. Lett. A
301
, 173
(2002
).6.
A.
Mostafazadeh
, J. Math. Phys.
44
, 974
(2003
).7.
8.
A.
Mostafazadeh
, Class. Quantum Grav.
20
, 155
(2003
);A.
Mostafazadeh
,Ann. Phys. (N.Y.)
309
, 1
(2004
);9.
A.
Mostafazadeh
, Phys. Lett. A
320
, 375
(2004
);10.
A.
Mostafazadeh
, Czech. J. Phys.
53
, 1079
(2003
).11.
12.
13.
P. D.
Hislop
and I. M.
Sigal
, Introduction to Spectral Theory
(Springer
, New York
, 1996
).14.
M.
Schechter
, Principles of Functional Analysis
(American Mathematical Society
, Providence
, 2002
).15.
P. R.
Halmos
, A Hilbert Space Problem Book
(Springer
, New York
, 1982
).16.
17.
T.
Kato
, Perturbation Theory for Linear Operators
(Springer
, Berlin
, 1995
).18.
R. A.
Horn
and C. R.
Johnson
, Matrix Analysis
(Cambridge University Press
, Cambridge
, 1999
).19.
F. G.
Scholtz
, H. B.
Geyer
, and F. J. W.
Hahne
, Ann. Phys. (N.Y.)
213
, 74
(1992
).© 2006 American Institute of Physics.
2006
American Institute of Physics
You do not currently have access to this content.