A connection between the Yang-Baxter relation for maps and the multidimensional consistency property of integrable equations on quad-graphs is investigated. The approach is based on the symmetry analysis of the corresponding equations. It is shown that the Yang-Baxter variables can be chosen as invariants of the multiparameter symmetry groups of the equations. We use the classification results by Adler, Bobenko, and Suris to demonstrate this method. Some new examples of Yang-Baxter maps are derived in this way from multifield integrable equations.
REFERENCES
1.
C. N.
Yang
, Phys. Rev. Lett.
19
, 1312
(1967
).2.
R. J.
Baxter
, Exactly Solved Models in Statistical Mechanics
(Academic
, London, 1982
).3.
4.
L. A.
Lambe
and D. E.
Radford
, Introduction to the Quantum Yang-Baxter Equation and Quantum Groups: An Algebraic Approach
(Kluwer Academic
, Dordrecht, 1997
).5.
J.
Fuchs
, Affine Lie Algebras and Quantum Groups
(Cambridge University Press
, Cambridge, 1995
).6.
V. G.
Drinfeld
, On Some Unsolved Problems in Quantum Group Theory
, Quantum groups (Leningrad, 1990), Lecture Notes in Mathematics, Vol. 1510
, edited by P. P.
Kulish
(Springer
, Berlin, 1992
), pp. 1
–8
.7.
8.
P.
Etingof
, T.
Schedler
, and A.
Soloviev
, Duke Math. J.
100
, 169
(1999
).9.
10.
Adopting the terminology in Ref. 9, set theoretic solutions to the YB equation will be referred to in the following simply as YB maps.
11.
12.
V. E.
Adler
, A. I.
Bobenko
, and Yu. B.
Suris
, Commun. Anal. Geom.
12
, 967
(2004
).13.
14.
15.
V. E.
Adler
, A. L.
Bobenko
, and Yu. B.
Suris
, Commun. Math. Phys.
233
, 513
(2003
).16.
17.
V. G.
Papageorgiou
, F. W.
Nijhoff
, and H. W.
Capel
, Phys. Lett. A
147
, 106
(1990
).18.
F. W.
Nijhoff
and H. W.
Capel
, Acta Appl. Math.
39
, 133
(1995
).19.
20.
B. K.
Harrison
, Phys. Rev. Lett.
41
, 1197
(1978
).21.
W. K.
Schief
, Stud. Appl. Math.
106
, 85
(2001
).22.
23.
F. W.
Nijhoff
, A.
Ramani
, B.
Grammaticos
, and Y.
Ohta
, Stud. Appl. Math.
106
, 261
(2001
).24.
P. J.
Olver
, Equivalence, Invariants, and Symmetry
(Cambridge University Press
, Cambridge, 1995
).25.
A.
Tongas
, D.
Tsoubelis
, and V.
Papageorgiou
, in Proceedings of the Tenth International Conference in Modern Group Analysis, edited by N. H.
Ibragimov
, C.
Sophocleous
, and P. A.
Damianou
, Larnaca, 2004
, pp. 222
–230
.26.
A.
Tongas
, D.
Tsoubelis
, and P.
Xenitidis
, J. Math. Phys.
42
, 5762
(2001
).27.
A. P.
Veselov
, Lectures at the workshop “Combinatorial Aspect of Integrable Systems
,” RIMS, Kyoto, July 2004
, MSJ Memoirs (to be published).28.
F. W.
Nijhoff
, in Discrete Integrable Geometry and Physics
, edited by A. I.
Bobenko
and R.
Seiler
(Oxford University Press
, 1999
), pp. 209
–234
.29.
F. W.
Nijhoff
, V. G.
Papageorgiou
, H. W.
Capel
, and G. R. W.
Quispel
, Inverse Probl.
8
, 597
(1992
).30.
31.
© 2006 American Institute of Physics.
2006
American Institute of Physics
You do not currently have access to this content.