In this paper we consider the minimum time population transfer problem for the z component of the spin of a (spin 1/2) particle, driven by a magnetic field, that is constant along the z axis and controlled along the x axis, with bounded amplitude. On the Bloch sphere (i.e., after a suitable Hopf projection), this problem can be attacked with techniques of optimal syntheses on two-dimensional (2-D) manifolds. Let (E,E) be the two energy levels, and Ω(t)M the bound on the field amplitude. For each couple of values E and M, we determine the time optimal synthesis starting from the level E, and we provide the explicit expression of the time optimal trajectories, steering the state one to the state two, in terms of a parameter that can be computed solving numerically a suitable equation. For ME1, every time optimal trajectory is bang-bang and, in particular, the corresponding control is periodic with frequency of the order of the resonance frequency ωR=2E. On the other side, for ME>1, the time optimal trajectory steering the state one to the state two is bang-bang with exactly one switching. For fixed E, we also prove that for M the time needed to reach the state two tends to zero. In the case ME>1 there are time optimal trajectories containing a singular arc. Finally, we compare these results with some known results of Khaneja, Brockett, and Glaser and with those obtained by controlling the magnetic field both on the x and y directions (or with one external field, but in the rotating wave approximation). As a byproduct we prove that the qualitative shape of the time optimal synthesis presents different patterns that cyclically alternate as ME0, giving a partial proof of a conjecture formulated in a previous paper.

1.
K.
Bergmann
,
H.
Theuer
, and
B. W.
Shore
, “
Coherent population transfer among quantum states of atoms and molecules
,”
Rev. Mod. Phys.
70
,
1003
1025
(
1998
).
2.
U.
Gaubatz
,
P.
Rudecki
,
M.
Becker
,
S.
Schiemann
,
M.
Kulz
, and
K.
Bergmann
, “
Population switching between vibrational levels in molecular beams
,”
Chem. Phys. Lett.
149
,
463
(
1988
).
3.
S.
Guérin
and
H.
Jauslin
, “
Control of quantum dynamics by laser pulses: Adiabatic Floquet theory
,”
Adv. Chem. Phys.
125
,
147
267
(
2003
).
4.
B. W.
Shore
,
The Theory of Coherent Atomic Excitation
(
Wiley
, New York, NY,
1990
).
5.
U.
Boscain
,
G.
Charlot
,
J.-P.
Gauthier
,
S.
Guérin
, and
H.-R.
Jauslin
, “
Optimal control in laser-induced population transfer for two- and three-level quantum systems
,”
J. Math. Phys.
43
,
2107
2132
(
2002
).
6.
M. A.
Dahleh
,
A. P.
Peirce
, and
H.
Rabitz
, “
Optimal control of quantum-mechanical systems: Existence, numerical approximation, and applications
,”
Phys. Rev. A
37
,
4950
4964
(
1988
).
7.
D.
D'Alessandro
and
M.
Dahleh
, “
Optimal control of two-level quantum systems
,”
IEEE Trans. Autom. Control
46
,
866
876
(
2001
).
8.
N.
Khaneja
,
R.
Brockett
, and
S. J.
Glaser
, “
Time optimal control in spin systems
,”
Phys. Rev. A
63
,
032308
(
2001
).
9.
V.
Ramakrishna
,
H.
Rabitz
,
M. V.
Salapaka
,
M.
Dahleh
, and
A.
Peirce
, “
Controllability of molecular systems
,”
Phys. Rev. A
51
,
960
966
(
1995
).
10.
R.
El Assoudi
,
J. P.
Gauthier
, and
I. A. K.
Kupka
, “
On subsemigroups of semisimple Lie groups
,”
Ann. Inst. Henri Poincare, Anal. Non Lineaire
13
,
117
133
(
1996
).
11.
J. P.
Gauthier
and
G.
Bornard
, “
Controlabilite deś sytemes bilineaires
,”
SIAM J. Control Optim.
20
,
377
384
(
1982
).
12.
V.
Jurdjevic
and
I. K.
Kupka
, “
Control systems on semisimple Lie groups and their homogeneous spaces
,”
Ann. Inst. Fourier
31
,
151
179
(
1981
).
13.
Y.
Sachkov
, “
Controllability of invariant systems on Lie groups and homogeneous spaces
,”
J. Math. Sci. (N.Y.)
100
,
2355
2427
(
2000
).
14.
A. A.
Agrachev
and
Yu. L.
Sachkov
, “
Control theory from the geometric viewpoint
,”
Encyclopedia of Mathematical Sciences
(
Springer-Verlag
, Berlin,
2004
), Vol.
87
.
15.
U.
Boscain
and
B.
Piccoli
,
Optimal Synthesis for Control Systems on 2-D Manifolds
, Springer, SMAI,
2004
; Vol.
43
.
16.
V.
Jurdjevic
,
Geometric Control Theory
(
Cambridge University Press
, Cambridge,
1997
).
17.
F.
Albertini
and
D.
D'Alessandro
, “
Notions of controllability for bilinear multilevel quantum systems
,”
IEEE Trans. Autom. Control
48
,
1399
1403
(
2003
).
18.
C.
Altafini
, “
Controllability of quantum mechanical systems by root space decomposition of su(N)
,”
J. Math. Phys.
43
,
2051
2062
(
2002
).
19.
A. A.
Agrachev
and
T.
Chambrion
, “An estimation of the controllability time for single-input systems on compact groups,” to appear on ESAIM COCV,
2006
.
20.
U.
Boscain
,
T.
Chambrion
, and
J.-P.
Gauthier
, “
On the K+P problem for a three-level quantum system: Optimality implies resonance
,”
J. Dyn. Control Syst.
8
,
547
572
(
2002
).
21.
U.
Boscain
and
G.
Charlot
, “
Resonance of minimizers for n-level quantum systems with an arbitrary cost
,” ESAIM COCV,
2004
, pp.
593
614
.
22.
U.
Boscain
,
T.
Chambrion
, and
G.
Charlot
, “
Nonisotropic 3-level quantum systems: Complete solutions for minimum time and minimal energy
,”
Discrete Contin. Dyn. Syst.
5
,
957
990
(
2005
).
23.
L.
Allen
and
J. H.
Eberly
,
Optical Resonance and Two-Level Atoms
(
Wiley
, New York,
1975
).
24.
U.
Boscain
and
B.
Piccoli
, “
Extremal syntheses for generic planar systems
,”
J. Dyn. Control Syst.
7
,
209
258
(
2001
).
25.
A.
Bressan
and
B.
Piccoli
, “
A generic classification of time optimal planar stabilizing feedbacks
,”
SIAM J. Control Optim.
36
,
12
32
(
1998
).
26.
B.
Piccoli
, “
Classifications of generic singularities for the planar time-optimal synthesis
,”
SIAM J. Control Optim.
34
,
1914
1946
(
1996
).
27.
H. J.
Sussmann
, “
Regular synthesis for time optimal control of single-input real-analytic systems in the plane
,”
SIAM J. Control Optim.
25
,
1145
1162
(
1987
).
28.
B.
Piccoli
and
H. J.
Sussmann
, “
Regular synthesis and sufficiency conditions for optimality
,”
SIAM J. Control Optim.
39
,
359
410
(
2000
).
29.
U.
Boscain
and
Y.
Chitour
, “
Time optimal synthesis for left–invariant control systems on SO(3)
,”
SIAM J. Control Optim.
44
,
111
139
(
2005
).
30.
A. A.
Agrachev
and
R. V.
Gamkrelidze
, “
Symplectic geometry for optimal control
, in
Non-Linear Controllability and Optimal Control
, Monogr. Textbooks Pure Appl. Math. (
Marcel Dekker
, New York,
1990
), Vol.
133
, pp.
263
277
.
31.
A. A.
Agrachev
and
M.
Sigalotti
, “
On the local structure of optimal trajectories in R3
,”
SIAM J. Control Optim.
42
,
513
531
(
2003
).
32.
H.
Schattler
, “
On the local structure of time optimal bang-bang trajectories in R3
,”
SIAM J. Control Optim.
26
,
186
204
(
1988
).
You do not currently have access to this content.