Cayley-Dickson doubling procedure is used to construct the root systems of some celebrated Lie algebras in terms of the integer elements of the division algebras of real numbers, complex numbers, quaternions, and octonions. Starting with the roots and weights of SU(2) expressed as the real numbers one can construct the root systems of the Lie algebras of SO(4),SP(2)SO(5),SO(8),SO(9),F4 and E8 in terms of the discrete elements of the division algebras. The roots themselves display the groups structures besides the octonionic roots of E8 which form a closed octonion algebra. The automorphism group Aut(F4) of the Dynkin diagram of F4 of order 2304, the largest crystallographic group in four-dimensional Euclidean space, is realized as the direct product of two binary octahedral group of quaternions preserving the quaternionic root system of F4. The Weyl groups of many Lie algebras, such as, G2,SO(7),SO(8),SO(9),SU(3)XSU(3), and SP(3)×SU(2) have been constructed as the subgroups of Aut(F4). We have also classified the other non-parabolic subgroups of Aut(F4) which are not Weyl groups. Two subgroups of orders 192 with different conjugacy classes occur as maximal subgroups in the finite subgroups of the Lie group G2 of orders 12096 and 1344 and proves to be useful in their constructions. The triality of SO(8) manifesting itself as the cyclic symmetry of the quaternionic imaginary units e1,e2,e3 is used to show that SO(7) and SO(9) can be embedded, triply symmetric way in SO(8) and F4 in respectively.

1.
F.
Gürsey
, “
Quaternionic and octonionic structures in physics, symmetries in physics
,” in
Proceedings of the 1st International Meeting on the History of Scientific Ideas, 20–26 Sept., 1983, Catalonia, Spain
, Edited by
M. G.
Donal
,
A.
Hermann
,
L.
Michell
, and
A.
Pais
(
Bellaterra, Barcelona, Spain
,
1987
).
2.
For a review see, for instance,
B. S.
Acharya
and
S.
Gukov
,
Phys. Rep.
392
,
121
(
2004
).
3.
T.
Pengpan
and
P.
Ramond
,
Phys. Rep.
315
,
137
(
1999
).
4.
I.
Bars
and
M.
Günaydin
,
Phys. Rev. Lett.
45
,
859
(
1980
);
5.
D. J.
Gross
,
J. A.
Harvey
,
E. J.
Martinec
, and
R.
Rohm
,
Phys. Rev. Lett.
54
,
502
(
1985
).
6.
H. S. M.
Coxeter
,
Duke Math. J.
13
,
561
(
1946
);
L. E.
Dickson
,
Ann. Math.
20
,
155
(
1919
);
F.
Gursey
,
Mod. Phys. Lett. A
2
,
967
(
1987
).
7.
E.
Cremmer
,
B.
Julia
, and
J.
Scherk
,
Phys. Lett.
70B
,
409
(
1978
).
8.
B.
Julia
,
Proceedings of the AMS-SIAM Summer Seminar on Applications of Group Theory in Physics and Math. Physics
(
University of Chicago, Chicago
,
1982
);
M.
Günaydin
,
G.
Sierra
, and
P. K.
Towsend
,
Phys. Lett.
133B
,
72
(
1983
).
9.
F.
Gürsey
,
P.
Ramond
, and
P.
Sikivie
,
Phys. Lett.
60B
,
177
(
1976
).
10.
J. H.
Conway
,
R. T.
Curtis
,
S. P.
Norton
,
R. A.
Parker
, and
R. A.
Wilson
,
Atlas of Finite Groups
(
Oxford University Press
, Oxford,
1985
);
E.
Humphreys
,
Reflection Groups and Coxeter Groups
(
Cambridge University Press
, Cambridge,
1990
).
11.
P.
du Val
,
Homographies, Quaternions and Rotations
(
Cambridge University Press
, Cambridge,
1964
);
J. H.
Conway
and
D. A.
Smith
,
On Quaternions and Octonions: Their Geometry, Arithmetic, and Symmetry
(
A. K. Peters Ltd.
, Natick, MA,
2003
).
12.
M.
Koca
,
R.
Koç
, and
M.
Al-Barwani
,
J. Math. Phys.
44
,
3123
(
2003
).
13.
M.
Koca
and
N.
Özdes
,
J. Phys. A
22
,
1469
(
1989
);
M.
Koca
,
J. Math. Phys.
33
,
497
(
1992
).
14.
F.
Karsch
and
M.
Koca
,
J. Phys. A
23
,
4739
(
1990
);
M.
Koca
and
R.
Koc
,
J. Math. Phys.
27
,
2429
(
1994
).
15.
M.
Koca
,
R.
Koç
, and
M.
Al-Barwani
,
J. Math. Phys.
44
,
3123
(
2003
).
16.
M.
Koca
and
R.
Koç
,
Tr. J. Phys.
19
,
304
(
1995
);
M.
Koca
,
R.
Koç
, and
N. O.
Koca
(unpublished).
17.
R. W.
Carter
,
Simple Groups of Lie Type
(
Wiley
, New York,
1972
).
18.
A.
Hurwitz
,
Nachrichten von der Koniglichen Geselchaft der Wissenschaften zu Gottingen
, p.
309
316
,
1898
. For a short proof see J. H. Conway and D. A. Smith in Ref. 11.
19.
H. S. M.
Coxeter
,
Regular Complex Polytopes
(
Cambridge University Press
, Cambridge,
1973
).
20.
J.
McKay
,
Am. Math. Soc. Proc. Sym. Pure Math.
37
,
183
(
1980
).
21.

See du Val in Ref. 11 and Coxeter in Ref. 19.

22.
J. H.
Conway
,
R. T.
Curtis
,
S. P.
Norton
,
R. A.
Parker
, and
R. A.
Wilson
,
Atlas of Finite Groups
(
Oxford University Press
, Oxford,
1985
).
23.

See, for instance, Coxeter in Ref. 19.

24.
M.
Koca
,
R.
Koc
,
M.
Al-Barwani
, and
S.
Al-Farsi
,
Linear Algebr. Appl.
412
,
441
(
2006)
.
25.

See J. H. Conway and D. A. Smith in Ref. 11.

26.
M.
Koca
,
R.
Koç
, and
N. O.
Koca
, hep-th/0509189.
27.
J. H.
Conway
,
R. T.
Curtis
,
S. P.
Norton
,
R. A.
Parker
, and
R. A.
Wilson
,
Atlas of Finite Groups
(
Oxford University Press
, Oxford,
1985
).
28.
D.
Vollhardt
and
P.
Wolfle
,
The Superfluid Phases of Helium 3
(
Taylor and Francis
, London,
1990
), and references therein.
29.

We use the notation of Ref. 11.

30.

The notation is such that A:B is the semidirect product of two groups A and B where A is the invariant subgroup of the product group (Ref. 22).

You do not currently have access to this content.