In this paper we analyze the resolvent, the heat kernel and the spectral zeta function of the operator d2dr21(4r2) over the finite interval. The structural properties of these spectral functions depend strongly on the chosen self-adjoint realization of the operator, a choice being made necessary because of the singular potential present. Only for the Friedrichs realization standard properties are reproduced, for all other realizations highly nonstandard properties are observed. In particular, for kN we find terms like (logt)k in the small-t asymptotic expansion of the heat kernel. Furthermore, the zeta function has s=0 as a logarithmic branch point.

1.
Abramowitz
,
M.
and
Stegun
,
I. A.
(eds.),
Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables
(
Dover
,
New York
,
1992
), reprint of the 1972 edition.
2.
Audretsch
,
J.
,
Jasper
,
U.
, and
Skarzhinsky
,
V. D.
, “
A pragmatic approach to the problem of the self-adjoint extension of Hamilton operators with the Aharonov-Bohm potential
,”
J. Phys. A
28
,
2359
2367
(
1995
).
3.
Bordag
,
M.
,
Dowker
,
S.
, and
Kirsten
,
K.
, “
Heat-kernels and functional determinants on the generalized cone
,”
Commun. Math. Phys.
182
,
371
393
(
1996
).
4.
Bordag
,
M.
,
Elizalde
,
E.
, and
Kirsten
,
K.
, “
Heat kernel coefficients of the Laplace operator on the D-dimensional ball
,”
J. Math. Phys.
37
,
895
916
(
1996
).
5.
Bordag
,
M.
,
Geyer
,
B.
,
Kirsten
,
K.
, and
Elizalde
,
E.
, “
Zeta function determinant of the Laplace operator on the D-dimensional ball
,”
Commun. Math. Phys.
179
,
215
234
(
1996
).
6.
Borg
,
J. L.
and
Pulé
,
J. V.
, “
Pauli approximations to the self-adjoint extensions of the Aharonov-Bohm Hamiltonian
,”
J. Math. Phys.
44
,
4385
4410
(
2003
).
7.
Brüning
,
J.
and
Seeley
,
R.
, “
Regular singular asymptotics
,”
Adv. Math.
58
,
133
148
(
1985
).
8.
Brüning
,
J.
and
Seeley
,
R.
, “
The resolvent expansion for second order regular singular operators
,”
J. Funct. Anal.
73
,
369
429
(
1987
).
9.
Brüning
,
J.
and
Seeley
,
R.
, “
An index theorem for first order regular singular operators
,”
Am. J. Math.
110
,
659
714
(
1988
).
10.
Bulla
,
W.
and
Gesztesy
,
F.
, “
Deficiency indices and singular boundary conditions in quantum mechanics
,”
J. Math. Phys.
26
,
2520
2528
(
1985
).
11.
Coon
,
S. A.
and
Holstein
,
B. R.
, “
Anomalies in quantum mechanics: the 1r2 potential
,”
Am. J. Phys.
70
,
513
519
(
2002
).
12.
Dowker
,
J. S.
and
Critchley
,
R.
, “
Effective Lagrangian and energy momentum tensor in de Sitter space
,”
Phys. Rev. D
13
,
3224
3232
(
1976
).
13.
Dunne
,
G. V.
,
Hur
,
J.
,
Lee
,
C.
and
Min
,
H.
, “
Precise quark mass dependence of instanton determinant
,”
Phys. Rev. Lett.
94
,
072001
(
2005
).
14.
Elizalde
,
E.
,
Odintsov
,
S. D.
,
Romeo
,
A.
,
Bytsenko
,
A. A.
, and
Zerbini
,
S.
,
Zeta Regularization Techniques with Applications
(
World Scientific
,
River Edge, NJ
,
1994
).
15.
Falomir
,
H.
,
Muschietti
,
M. A.
, and
Pisani
,
P. A. G.
, “
On the resolvent and spectral functions of a second order differential operator with a regular singularity
,”
J. Math. Phys.
45
,
4560
4577
(
2004
).
16.
Falomir
,
H.
,
Muschietti
,
M. A.
,
Pisani
,
P. A. G.
, and
Seeley
,
R.
, “
Unusual poles of the ζ-functions for some regular singular differential operators
,”
J. Phys. A
36
,
9991
10010
(
2003
).
17.
Falomir
,
H.
and
Pisani
,
P. A. G.
, “
Hamiltonian self-adjoint extensions for (2+1)-dimensional Dirac particles
,”
J. Phys. A
34
,
4143
4154
(
2001
).
18.
Frank
,
W. M.
,
Land
,
D. J.
, and
Spector
,
R. M.
, “
Singular potentials
,”
Rev. Mod. Phys.
43
,
36
98
(
1971
).
19.
Gil
,
J. B.
and
Mendoza
,
G.
, “
Adjoints of elliptic cone operators
,”
Am. J. Math.
125
,
357
408
(
2003
).
20.
Gil
,
J. B.
,
Krainer
,
T.
, and
Mendoza
,
G.
, “
Resolvents of elliptic cone operators
,” preprint math.AP/0410176 at arXiv.org.
21.
Gilkey
,
P. B.
,
Invariance Theory, the Heat Equation, and the Atiyah-Singer Index Theorem
, 2nd ed. (
CRC Press
,
Boca Raton, FL
,
1995
).
22.
Gradshteyn
,
I. S.
and
Ryzhik
,
I. M.
,
Table of Integrals, Series, and Products
, 6th ed. (
Academic
,
San Diego, CA
,
2000
). Translated from the Russian, translation edited and with a preface by Alan Jeffrey and Daniel Zwillinger.
23.
Harmer
,
M.
, “
Hermitian symplectic geometry and extension theory
,”
J. Phys. A
33
,
9193
9203
(
2000
).
24.
Harmer
,
M.
, “
Hermitian symplectic geometry and the factorization of the scattering matrix on graphs
,”
J. Phys. A
33
,
9015
9032
(
2000
).
25.
Hawking
,
S. W.
, “
Zeta function regularization of path integrals in curved spacetime
,”
Commun. Math. Phys.
55
,
133
148
(
1977
).
26.
Hildebrand
,
F. B.
,
Methods of Applied Mathematics
, 2nd ed. (
Dover
,
New York
,
1992
).
27.
Kay
,
B. S.
and
Studer
,
U. M.
, “
Boundary conditions for quantum mechanics on cones and fields around cosmic strings
,”
Commun. Math. Phys.
139
,
103
139
(
1991
).
28.
Kirsten
,
K.
,
Spectral Functions In Mathematics And Physics
(
Chapman and Hall/CRC Press
,
Boca Raton
,
2001
).
29.
Kirsten
,
K.
,
Loya
,
P.
, and
Park
,
J.
, “
Exotic expansions and pathological properties of ζ-functions on conic manifolds
,” (unpublished).
30.
Kirsten
,
K.
and
McKane
,
A. J.
, “
Functional determinants by contour integration methods
,”
Ann. Phys.
308
,
502
527
(
2003
).
31.
Kochubeĭ
,
A. N.
, “
Extensions of a positive definite symmetric operator
,”
Dokl. Akad. Nauk SSSR
237
,
168
171
(
1979
).
32.
Kochubeĭ
,
A. N.
, “
Selfadjoint extensions of Schroedinger operators with singular potentials
,”
Order, Disorder and Chaos in Quantum Systems
(
Dubna
,
1989
)
[
Oper. Theory Adv. Appl.
46
,
221
227
(Birkhäuser, Basel,
1990
)].
33.
Kochubeĭ
,
A. N.
, “
Selfadjoint extensions of the Schrödinger operator with a singular potential
,”
Sib. Math. J.
32
,
60
69
(
1991
).
34.
Kostrykin
,
V.
and
Schrader
,
R.
, “
Kirchhoff’s rule for quantum wires
,”
J. Phys. A
32
,
595
630
(
1999
).
35.
Lesch
,
M.
,
Operators of Fuchs Type, Conical Singularities, and Asymptotic Methods
(
Teubner Verlagsgesellschaft mbH
,
Stuttgart
,
1997
).
36.
Lesch
,
M.
, “
Determinants of regular singular sturm-liouville operators
,”
Math. Nachr.
194
,
139
170
(
1998
).
37.
Loya
,
P.
,
McDonald
,
P.
, and
Park
,
J.
, “
Zeta regularized determinants for conic manifolds
,” http://www.math.binghamton.edu/paul/papers/
38.
Mooers
,
E. A.
, “
Heat kernel asymptotics on manifolds with conic singularities
,”
J. Anal. Math.
78
,
1
36
(
1999
).
39.
Novikov
,
S. P.
,
Schrodinger Operators on Graphs and Symplectic Geometry
, The Arnoldfest (
Toronto
,
ON
,
1997
),
Novikov
,
S. P.
,
Fields Inst. Commun.
, Vol.
24
(American Mathematical Society, Providence, RI,
1999
), pp.
397
413
.
40.
Pavlov
,
B. S.
, “
The theory of extensions, and explicitly solvable models
,”
Usp. Mat. Nauk
42
,
99
131
(
1987
).
41.
Ray
,
D. B.
and
Singer
,
I. M.
, “
R-torsion and the Laplacian on Riemannian manifolds
,”
Adv. Math.
7
,
145
210
(
1971
).
42.
Schrohe
,
E.
and
Seiler
,
J.
, “
The resolvent of closed extensions of cone differential operators
,” to appear in Canadian Journal of Mathematics.
43.
Seeley
,
R. T.
, “
Analytic extension of the trace associated with elliptic boundary problems
,”
Am. J. Math.
91
,
963
983
(
1969
).
44.
Tsutsui
,
I.
,
Fülöp
,
T.
, and
Cheon
,
T.
, “
Connection conditions and the spectral family under singular potentials
,”
J. Phys. A
36
,
275
287
(
2003
).
You do not currently have access to this content.