In this paper we analyze the resolvent, the heat kernel and the spectral zeta function of the operator over the finite interval. The structural properties of these spectral functions depend strongly on the chosen self-adjoint realization of the operator, a choice being made necessary because of the singular potential present. Only for the Friedrichs realization standard properties are reproduced, for all other realizations highly nonstandard properties are observed. In particular, for we find terms like in the small- asymptotic expansion of the heat kernel. Furthermore, the zeta function has as a logarithmic branch point.
REFERENCES
1.
Abramowitz
, M.
and Stegun
, I. A.
(eds.), Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables
(Dover
, New York
, 1992
), reprint of the 1972 edition.2.
Audretsch
, J.
, Jasper
, U.
, and Skarzhinsky
, V. D.
, “A pragmatic approach to the problem of the self-adjoint extension of Hamilton operators with the Aharonov-Bohm potential
,” J. Phys. A
28
, 2359
–2367
(1995
).3.
Bordag
, M.
, Dowker
, S.
, and Kirsten
, K.
, “Heat-kernels and functional determinants on the generalized cone
,” Commun. Math. Phys.
182
, 371
–393
(1996
).4.
Bordag
, M.
, Elizalde
, E.
, and Kirsten
, K.
, “Heat kernel coefficients of the Laplace operator on the -dimensional ball
,” J. Math. Phys.
37
, 895
–916
(1996
).5.
Bordag
, M.
, Geyer
, B.
, Kirsten
, K.
, and Elizalde
, E.
, “Zeta function determinant of the Laplace operator on the -dimensional ball
,” Commun. Math. Phys.
179
, 215
–234
(1996
).6.
Borg
, J. L.
and Pulé
, J. V.
, “Pauli approximations to the self-adjoint extensions of the Aharonov-Bohm Hamiltonian
,” J. Math. Phys.
44
, 4385
–4410
(2003
).7.
Brüning
, J.
and Seeley
, R.
, “Regular singular asymptotics
,” Adv. Math.
58
, 133
–148
(1985
).8.
Brüning
, J.
and Seeley
, R.
, “The resolvent expansion for second order regular singular operators
,” J. Funct. Anal.
73
, 369
–429
(1987
).9.
Brüning
, J.
and Seeley
, R.
, “An index theorem for first order regular singular operators
,” Am. J. Math.
110
, 659
–714
(1988
).10.
Bulla
, W.
and Gesztesy
, F.
, “Deficiency indices and singular boundary conditions in quantum mechanics
,” J. Math. Phys.
26
, 2520
–2528
(1985
).11.
Coon
, S. A.
and Holstein
, B. R.
, “Anomalies in quantum mechanics: the potential
,” Am. J. Phys.
70
, 513
–519
(2002
).12.
Dowker
, J. S.
and Critchley
, R.
, “Effective Lagrangian and energy momentum tensor in de Sitter space
,” Phys. Rev. D
13
, 3224
–3232
(1976
).13.
Dunne
, G. V.
, Hur
, J.
, Lee
, C.
and Min
, H.
, “Precise quark mass dependence of instanton determinant
,” Phys. Rev. Lett.
94
, 072001
(2005
).14.
Elizalde
, E.
, Odintsov
, S. D.
, Romeo
, A.
, Bytsenko
, A. A.
, and Zerbini
, S.
, Zeta Regularization Techniques with Applications
(World Scientific
, River Edge, NJ
, 1994
).15.
Falomir
, H.
, Muschietti
, M. A.
, and Pisani
, P. A. G.
, “On the resolvent and spectral functions of a second order differential operator with a regular singularity
,” J. Math. Phys.
45
, 4560
–4577
(2004
).16.
Falomir
, H.
, Muschietti
, M. A.
, Pisani
, P. A. G.
, and Seeley
, R.
, “Unusual poles of the -functions for some regular singular differential operators
,” J. Phys. A
36
, 9991
–10010
(2003
).17.
Falomir
, H.
and Pisani
, P. A. G.
, “Hamiltonian self-adjoint extensions for -dimensional Dirac particles
,” J. Phys. A
34
, 4143
–4154
(2001
).18.
Frank
, W. M.
, Land
, D. J.
, and Spector
, R. M.
, “Singular potentials
,” Rev. Mod. Phys.
43
, 36
–98
(1971
).19.
Gil
, J. B.
and Mendoza
, G.
, “Adjoints of elliptic cone operators
,” Am. J. Math.
125
, 357
–408
(2003
).20.
Gil
, J. B.
, Krainer
, T.
, and Mendoza
, G.
, “Resolvents of elliptic cone operators
,” preprint math.AP/0410176 at arXiv.org.21.
Gilkey
, P. B.
, Invariance Theory, the Heat Equation, and the Atiyah-Singer Index Theorem
, 2nd ed. (CRC Press
, Boca Raton, FL
, 1995
).22.
Gradshteyn
, I. S.
and Ryzhik
, I. M.
, Table of Integrals, Series, and Products
, 6th ed. (Academic
, San Diego, CA
, 2000
). Translated from the Russian, translation edited and with a preface by Alan Jeffrey and Daniel Zwillinger.23.
Harmer
, M.
, “Hermitian symplectic geometry and extension theory
,” J. Phys. A
33
, 9193
–9203
(2000
).24.
Harmer
, M.
, “Hermitian symplectic geometry and the factorization of the scattering matrix on graphs
,” J. Phys. A
33
, 9015
–9032
(2000
).25.
Hawking
, S. W.
, “Zeta function regularization of path integrals in curved spacetime
,” Commun. Math. Phys.
55
, 133
–148
(1977
).26.
27.
Kay
, B. S.
and Studer
, U. M.
, “Boundary conditions for quantum mechanics on cones and fields around cosmic strings
,” Commun. Math. Phys.
139
, 103
–139
(1991
).28.
Kirsten
, K.
, Spectral Functions In Mathematics And Physics
(Chapman and Hall/CRC Press
, Boca Raton
, 2001
).29.
Kirsten
, K.
, Loya
, P.
, and Park
, J.
, “Exotic expansions and pathological properties of -functions on conic manifolds
,” (unpublished).30.
Kirsten
, K.
and McKane
, A. J.
, “Functional determinants by contour integration methods
,” Ann. Phys.
308
, 502
–527
(2003
).31.
Kochubeĭ
, A. N.
, “Extensions of a positive definite symmetric operator
,” Dokl. Akad. Nauk SSSR
237
, 168
–171
(1979
).32.
Kochubeĭ
,A. N.
, “Selfadjoint extensions of Schroedinger operators with singular potentials
,” Order, Disorder and Chaos in Quantum Systems
(Dubna
, 1989
)[
Oper. Theory Adv. Appl.
46
, 221
–227
(Birkhäuser, Basel, 1990
)].33.
Kochubeĭ
, A. N.
, “Selfadjoint extensions of the Schrödinger operator with a singular potential
,” Sib. Math. J.
32
, 60
–69
(1991
).34.
Kostrykin
, V.
and Schrader
, R.
, “Kirchhoff’s rule for quantum wires
,” J. Phys. A
32
, 595
–630
(1999
).35.
Lesch
, M.
, Operators of Fuchs Type, Conical Singularities, and Asymptotic Methods
(Teubner Verlagsgesellschaft mbH
, Stuttgart
, 1997
).36.
Lesch
, M.
, “Determinants of regular singular sturm-liouville operators
,” Math. Nachr.
194
, 139
–170
(1998
).37.
Loya
, P.
, McDonald
, P.
, and Park
, J.
, “Zeta regularized determinants for conic manifolds
,” http://www.math.binghamton.edu/paul/papers/38.
Mooers
, E. A.
, “Heat kernel asymptotics on manifolds with conic singularities
,” J. Anal. Math.
78
, 1
–36
(1999
).39.
Novikov
,S. P.
, Schrodinger Operators on Graphs and Symplectic Geometry
, The Arnoldfest (Toronto
, ON
, 1997
),Novikov
, S. P.
,Fields Inst. Commun.
, Vol. 24
(American Mathematical Society, Providence, RI, 1999
), pp. 397
–413
.40.
Pavlov
, B. S.
, “The theory of extensions, and explicitly solvable models
,” Usp. Mat. Nauk
42
, 99
–131
(1987
).41.
Ray
, D. B.
and Singer
, I. M.
, “-torsion and the Laplacian on Riemannian manifolds
,” Adv. Math.
7
, 145
–210
(1971
).42.
Schrohe
, E.
and Seiler
, J.
, “The resolvent of closed extensions of cone differential operators
,” to appear in Canadian Journal of Mathematics.43.
Seeley
, R. T.
, “Analytic extension of the trace associated with elliptic boundary problems
,” Am. J. Math.
91
, 963
–983
(1969
).44.
Tsutsui
, I.
, Fülöp
, T.
, and Cheon
, T.
, “Connection conditions and the spectral family under singular potentials
,” J. Phys. A
36
, 275
–287
(2003
).45.
Wolfram research,
BesselJ
, http://functions.wolfram.com/BesselAiryStruveFunctions/BesselJ/© 2006 American Institute of Physics.
2006
American Institute of Physics
You do not currently have access to this content.