This paper considers systems subject to nonholonomic constraints which are not uniform on the whole configuration manifold. When the constraints change, the system undergoes a transition in order to comply with the new imposed conditions. Building on previous work on the Hamiltonian theory of impact, we tackle the problem of mathematically describing the classes of transitions that can occur. We propose a comprehensive formulation of the transition principle that encompasses the various impulsive regimes of Hamiltonian systems. Our formulation is based on the partial symplectic formalism, which provides a suitable framework for the dynamics of nonholonomic systems. We pay special attention to mechanical systems and illustrate the results with several examples.

1.
Abraham
,
R.
,
Marsden
,
J. E.
,
Ratiu
,
T. S.
,
Manifolds, Tensor Analysis and Applications
. 2nd ed., (
Springer-Verlag
,
New York, Heidelberg, Berlin
,
1988
).
2.
Appell
,
P.
,
Traité de Mécanique Rationnelle
, 6th ed., tome II (
Gauthier-Villars
,
Paris
,
1953
).
3.
Bates
,
L.
and
Śniatycki
,
J.
, “
Nonholonomic reduction
,”
Rep. Math. Phys.
32
,
99
115
(
1992
).
4.
Bloch
,
A. M.
,
Nonholonomic Mechanics and Control
,
Interdisciplinary Applied Mathematics Series
, Vol.
24
(
Springer-Verlag
,
New York
,
2003
).
5.
Bloch
,
A. M.
,
Krishnaprasad
,
P. S.
,
Marsden
,
J. E.
and
Murray
,
R. M.
, “
Nonholonomic mechanical systems with symmetry
,”
Arch. Ration. Mech. Anal.
136
,
21
99
(
1996
).
6.
Bocharov
,
A. V.
and
Vinogradov
,
A. M.
, “
Appendix II of A. M. Vinogradov and B. A. Kuperschmidt: The structures of Hamiltonian mechanics
,”
Russ. Math. Surveys
32
,
177
243
(
1977
).
7.
Brockett
,
R. W.
, “
Hybrid models for motion control systems
,”
Essays in Control: Perspectives in the Theory and its Applications
(
Birkhäuser
,
Boston, MA
,
1993
), pp.
29
53
.
8.
Brogliato
,
B.
,
Nonsmooth Impact Mechanics: Models, Dynamics and Control
,
Lectures Notes in Control and Information Science 220
(
Springer
,
New York
,
1996
).
9.
Brogliato
,
B.
, “
Some perspectives in the analysis and control of complementarity systems
,”
IEEE Trans. Autom. Control
48
,
918
935
(
2003
).
10.
Bullo
,
F.
and
Zefran
,
M.
, “
Modeling and controllability for a class of hybrid mechanical systems
,”
IEEE Trans. Rob. Autom.
18
,
563
573
(
2002
).
11.
Cantrijn
,
F.
,
de León
,
M.
, and
Martín de Diego
,
D.
, “
On almost-Poisson structures in nonholonomic Mechanics
,”
Nonlinearity
12
,
721
737
(
1999
).
12.
Cariñena
,
J. F.
and
Rañada
,
M. F.
, “
Lagrangian systems with constraints: a geometric approach to the method of Lagrange multipliers
,”
J. Phys. A
26
,
1335
1351
(
1993
).
13.
Cendra
,
H.
,
Lacomba
,
E. A.
, and
Reartes
,
W.
, “
The Lagrange-d’Alembert-Poincaré equations for the symmetric rolling sphere
,”
Proceedings of the Sixth “Dr. Antonio A. R. Monteiro” Congress of Mathematics
, edited by
E.
Fernández
,
A.
Germani
,
L.
Monteiro
,
H.
Cendra
, and
L.
Piovan
(
Univ. Nac. Sur Dep. Mat. Inst. Mat.
,
Bahía Blanca
,
2001
), pp.
19
32
.
14.
Chen
,
B.
,
Wang
,
L. S.
,
Chu
,
S. S.
, and
Chou
,
W. T.
, “
A new classification of nonholonomic constraints
,”
Proc. R. Soc. London, Ser. A
453
,
631
642
(
1997
).
15.
Cortés
,
J.
,
Geometric, Control and Numerical Aspects of Nonholonomic Systems
,
Lecture Notes in Mathematics Series
, Vol.
1793
(
Springer-Verlag
,
Berlin, Heidelberg, New York
,
2002
).
16.
Cortés
,
J.
,
de León
,
M.
,
Martín de Diego
,
D.
, and
Martínez
,
S.
, “
Mechanical systems subjected to generalized nonholonomic constraints
,”
Proc. R. Soc. London, Ser. A
457
,
651
670
(
2001
).
17.
Cortés
,
J.
, and
Martínez
,
S.
, “
The consistency problem in optimal control: the degenerate case
,”
Rep. Math. Phys.
51
,
171
186
(
2003
).
18.
de León
,
M.
and
Martín de Diego
,
D.
, “
On the geometry of nonholonomic Lagrangian systems
,”
J. Math. Phys.
37
,
3389
3414
(
1996
).
19.
Favretti
,
M.
, “
On the use of configuration variables as control variables in mechanical systems
,”
Proceedings of the IEEE Conference on Decision and Control
,
IEEE
,
San Diego, CA
,
1997
, pp.
4210
4215
.
20.
Ibort
,
A.
,
de León
,
M.
,
Lacomba
,
E.
,
Marrero
,
J. C.
,
Martín de Diego
,
D.
, and
Pitanga
,
P.
, “
Geometric formulation of Carnot’s theorem
,”
J. Phys. A
34
,
1691
1712
(
2001
).
21.
Kobayashi
,
S.
, and
Nomizu
,
K.
,
Foundations of Differential Geometry
,
Interscience Tracts in Pure and Applied Mathematics
(
Interscience Publishers
,
Wiley, New York
,
1963
).
22.
Koiller
,
J.
, “
Reduction of some classical nonholonomic systems with symmetry
,”
Arch. Ration. Mech. Anal.
118
,
113
148
(
1992
).
23.
Lacomba
,
E. A.
and
Tulczyjew
,
W. A.
, “
Geometric formulation of mechanical systems with one-sided constraints
,”
J. Phys. A
23
,
2801
2813
(
1990
).
24.
Levi-Civita
,
T.
, and
Amaldi
,
U.
,
Lezioni di Meccanica Razionale
(
Zanicchelli
,
Bologna
,
1952
), Vol.
2
, Part 2.
25.
Libermann
,
P.
, and
Marle
,
C.-M.
,
Symplectic Geometry and Analytical Mechanics
(
D. Reidel
,
Dordrecht
,
1987
).
26.
Lizzi
,
F.
,
Marmo
,
G.
,
Sparano
,
G.
, and
Vinogradov
,
A. M.
, “
Eiconal type equations for geometrical singularities of solutions in field theory
,”
J. Geom. Phys.
14
,
211
235
(
1994
).
27.
Lychagin
,
V. V.
, “
Geometric theory of singularities of solutions of nonlinear differential equations
,”
J. Sov. Math.
51
,
2735
2757
(
1990
).
28.
Marle
,
C.-M.
, “
Reduction of constrained mechanical systems and stability of relative equilibria
,”
Commun. Math. Phys.
174
,
295
318
(
1995
).
29.
Moreau
,
J. J.
,
Mécanique Classique
, Tome II (
Masson
,
Paris
,
1971
).
30.
Neimark
,
J. I.
and
Fufaev
,
N. A.
,
Dynamics of Nonholonomic Systems
,
Translations of the American Mathematical Society
, Vol.
33
(
American Mathematical Society
,
Providence, RI
,
1972
).
31.
Painlevé
,
P.
,
Cours de Mécanique
, Tome I (
Gauthier-Villars
,
Paris
,
1930
).
32.
Pars
,
L. A.
,
A Treatise on Analytical Dynamics
(
Ox Bow
,
Woodbridge, CT
,
1965
).
33.
Pasquero
,
S.
, “
Ideality criterion for unilateral constraints in time-dependent impulsive mechanics
,”
J. Math. Phys.
46
,
112904
(
2005
).
34.
Pugliese
,
F.
, and
Vinogradov
,
A. M.
, “
On the geometry of singular Lagrangians
,”
J. Geom. Phys.
35
,
35
55
(
2000
).
35.
Pugliese
,
F.
, and
Vinogradov
,
A. M.
, “
Geometry of inelastic collisions
,”
Acta Appl. Math.
72
,
77
85
(
2002
).
36.
Rosenberg
,
R.
,
Analytical Dynamics
(
Plenum
,
New York
,
1977
).
37.
Stewart
,
D. E.
, “
Rigid-body dynamics with friction and impact
,”
SIAM Rev.
42
,
3
39
(
2000
).
38.
Stronge
,
W. J.
, “
Rigid body collisions with friction
,”
Proc. R. Soc. London, Ser. A
431
,
169
181
(
1990
).
39.
van der Schaft
,
A. J.
and
Maschke
,
B. M.
, “
On the Hamiltonian formulation of nonholonomic mechanical systems
,”
Rep. Math. Phys.
34
,
225
233
(
1994
).
40.
van der Schaft
,
A. J.
and
Schumachers
,
J. M.
,
An Introduction to Hybrid Dynamical Systems
,
Lecture Notes in Control and Information Sciences Series
, Vol.
251
(
Springer-Verlag
,
New York
,
1999
).
41.
Vinogradov
,
A. M.
, “
Geometry of nonlinear differential equations
,”
J. Sov. Math.
17
,
1624
1649
(
1981
).
42.
Wang
,
L. S.
and
Chou
,
W. T.
, “
The analysis of constrained impulsive motion
,”
Trans. ASME, J. Appl. Mech.
70
,
583
594
(
2003
).
You do not currently have access to this content.