We consider a scalar field action for which the Lagrangian density is a power of the massless Klein-Gordon Lagrangian. The coupling of gravity to this matter action is considered. In this case, we show the existence of nontrivial scalar field configurations with vanishing energy-momentum tensor on any static, spherically symmetric vacuum solutions of the Einstein equations. These configurations in spite of being coupled to gravity do not affect the curvature of space-time. The properties of this particular matter action are also analyzed. For a particular value of the exponent, the extended Klein-Gordon action is shown to exhibit a conformal invariance without requiring the introduction of a nonminimal coupling. We also establish a correspondence between this action and a nonrelativistic isentropic fluid in one fewer dimension. This fluid can be identified with the (generalized) Chaplygin gas for a particular value of the power. It is also shown that the nonrelativistic fluid admits, apart from the Galileo symmetry, an additional symmetry whose action is a rescaling of the time.

1.
M.
Natsuume
,
T.
Okamura
, and
M.
Sato
,
Phys. Rev. D
61
,
104005
(
2000
);
E.
Ayón-Beato
,
A.
García
,
A.
Macís
, and
J. M.
Pérez-Sánchez
,
Phys. Lett. B
495
,
164
(
2000
);
M.
Henneaux
,
C.
Martínez
,
R.
Troncoso
, and
J.
Zanelli
,
Phys. Rev. D
65
,
104007
(
2002
);
J.
Gegenberg
,
C.
Martínez
, and
R.
Troncoso
,
Phys. Rev. D
67
,
084007
(
2003
);
E.
Ayón-Beato
,
C.
Martínez
, and
J.
Zanelli
, arXiv:hep-th/0403228.
2.
E.
Ayon-Beato
,
C.
Martinez
,
R.
Troncoso
, and
J.
Zanelli
,
Phys. Rev. D
71
,
104037
(
2005
).
3.
C.
Duval
,
G.
Burdet
,
H. P.
Kunzle
, and
M.
Perrin
,
Phys. Rev. D
31
,
1841
(
1985
);
C.
Duval
,
G. W.
Gibbons
, and
P.
Horvathy
,
Phys. Rev. D
43
,
3907
(
1991
).
4.
A. Y.
Kamenshchik
,
U.
Moschella
, and
V.
Pasquier
,
Phys. Lett. B
511
,
265
(
2001
).
5.
M. C.
Bento
,
O.
Bertolami
, and
A. A.
Sen
,
Phys. Rev. D
66
,
043507
(
2002
).
6.
R.
Banerjee
and
S.
Ghosh
, arXiv:gr-qc/0508021.
7.
M.
Bordemann
and
J.
Hoppe
,
Phys. Lett. B
317
,
315
(
1993
).
8.
D.
Bazeia
and
R.
Jackiw
,
Ann. Phys.
270
,
246
(
1998
);
R.
Jackiw
and
A. P.
Polychronakos
,
Commun. Math. Phys.
207
,
107
(
1999
).
9.
R.
Jackiw
and
A. P.
Polychronakos
,
Phys. Rev. D
62
,
085019
(
2000
);
Y.
Bergner
and
R.
Jackiw
,
Phys. Lett. A
284
,
146
(
2001
).
10.
R.
Jackiw
, arXiv:physics/0010042;
R.
Jackiw
,
V. P.
Nair
,
S. Y.
Pi
, and
A. P.
Polychronakos
,
J. Phys. A
37
,
R327
(
2004
).
11.
T. S.
Nyawelo
,
J. W.
Van Holten
, and
S. Groot
Nibbelink
,
Phys. Rev. D
64
,
021701
(
2001
);
A.
Das
and
Z.
Popowicz
,
Phys. Lett. A
296
,
15
(
2002
);
T. S.
Nyawelo
,
Nucl. Phys. B
672
,
87
(
2003
).
12.
M.
Hassaine
and
P. A.
Horvathy
,
Ann. Phys.
282
,
218
(
2000
);
M.
Hassaine
and
P. A.
Horvathy
,
Lett. Math. Phys.
57
,
33
(
2001
);
13.
L.
O’Raifeartaigh
and
V. V.
Sreedhar
,
Ann. Phys.
293
,
215
(
2001
);
M.
Hassaine
and
P. A.
Horvathy
,
Phys. Lett. A
279
,
215
(
2001
).
14.
M.
Henkel
and
J.
Unterberger
,
Nucl. Phys. B
660
,
407
(
2003
).
15.
O.
Jahn
,
V. V.
Sreedhar
, and
A.
Virmani
,
Ann. Phys.
316
,
30
(
2005
).
You do not currently have access to this content.