Bohr proposed in 1913 a model for atoms and molecules by synthesizing Planck’s quantum hypothesis with classical mechanics. When the atom number Z is small, his model provides good accuracy for the ground-state energy. When Z is large, his model is not as accurate in comparison with the experimental data but still provides a good trend agreeing with the experimental values of the ground-state energy of atoms. The main objective of this paper is to provide a rigorous mathematical analysis for the Bohr atom model. We have established the following: (1) An existence proof of the global minimizer of the ground-state energy through scaling. (2) A careful study of the critical points of the energy function. Such critical points include both the stable steady-state electron configurations as well as unstable saddle-type configurations. (3) Coplanarity of certain electron configurations. Numerical examples and graphics are also illustrated.

1.
Bohr
,
N.
, “
On the constitution of atoms and molecules, Part I
,”
Philos. Mag.
26
,
1
25
(
1913
).
2.
Bohr
,
N.
, “
On the constitution of atoms and molecules, Part II, Systems containing only a single nucleus
,”
Philos. Mag.
26
,
476
(
1913
).
3.
Bohr
,
N.
, “
On the constitution of atoms and molecules, Part III, Systems containing several nuclei
,”
Philos. Mag.
26
,
857
875
(
1913
).
4.
Chin
,
S. A.
(private communication).
5.
Gomez
,
R. W.
, “
Ground and excited energy levels of helium-like atoms using a simple geometrical model
,”
Eur. J. Phys.
13
,
135
138
(
1992
).
6.
Harcourt
,
R. D.
, “
Bohr orbit theory revisited: I. Ground state energies for the helium isoelectronic sequence
,”
J. Phys. B
16
,
2647
2657
(
1983
).
7.
Harcourt
,
R. D.
, “
Bohr orbit theory revisited: II. Energies for 1S, 2P, 3D and 4F states of helium
,”
Int. J. Quantum Chem.
31
,
445
453
(
1987
).
8.
Harcourt
,
R. D.
,
Beckworth
,
J.
, and
Feigin
,
R.
, “
Simple “local” energy studies on the origin of Hund’s rule of maximum spin multiplicity and the energies of 1snmax, configurations for He, Ne8+, and AR16+
,”
Chem. Phys. Lett.
26
,
126
130
(
1974
).
9.
Hershbach
,
D. R.
,
Avery
,
J.
, and
Goscinski
,
O.
, (eds.),
Dimensional Scaling in Chemical Physics
(
Kluwer
,
Dordrecht, The Netherlands
,
1992
).
10.
Hill
,
M. J. M.
, “
On functions of more than two variables analogous to tesseral harmonics
,”
Trans. Cambridge Philos. Soc.
13
,
36
(
1883
).
11.
Patton
,
K.
, Chemistry models learning outline, http://www.lionden.com/chemistry_models.htm
12.
Svidzinsky
,
A. A.
,
Scully
,
M. O.
, and
Herschbach
,
D. R.
, “
Simple and surprisingly accurate approach to the chemical bond obtained from dimensionality scaling
,”
Phys. Rev. Lett.
95
,
080401
(
2005
).
13.
Svidzinsky
,
A. A.
,
Scully
,
M. O.
, and
Herschbach
,
D. R.
, “
Bohr’s 1913 molecular model revisited
,”
Proc. Natl. Acad. Sci. U.S.A.
102
,
11985
11988
(
2005
).
14.
Tanner
,
G.
,
Richter
,
K.
, and
Rost
,
J.-M.
, “
The theory of two-electron atoms: between ground state and complete fragmentation
,”
Rev. Mod. Phys.
72
,
497
544
(
2000
).
15.
Trabesinger
,
A.
, ‘Bohr’n again, Nature Physics Published online: 25 August 2005, http://www.nature.com/nphys/journal/vaop/nprelaunch/full/nphys115.html
You do not currently have access to this content.