The two principal/immediate influences—which we seek to interrelate here—upon the undertaking of this study are papers of Życzkowski and Słomczyński [J. Phys. A34, 6689 (2001)] and of Petz and Sudár [J. Math. Phys.37, 2262 (1996)]. In the former work, a metric (the Monge one, specifically) over generalized Husimi distributions was employed to define a distance between two arbitrary density matrices. In the Petz-Sudár work (completing a program of Chentsov), the quantum analog of the (classically unique) Fisher information (monotone) metric of a probability simplex was extended to define an uncountable infinitude of Riemannian (also monotone) metrics on the set of positive definite density matrices. We pose here the questions of what is the specific/unique Fisher information metric for the (classically defined) Husimi distributions and how does it relate to the infinitude of (quantum) metrics over the density matrices of Petz and Sudár? We find a highly proximate (small relative entropy) relationship between the probability distribution (the quantum Jeffreys’ prior) that yields quantum universal data compression, and that which (following Clarke and Barron) gives its classical counterpart. We also investigate the Fisher information metrics corresponding to the escort Husimi, positive-P and certain Gaussian probability distributions, as well as, in some sense, the discrete Wigner pseudoprobability. The comparative noninformativity of prior probability distributions—recently studied by Srednicki [Phys. Rev. A71, 052107 (2005)]—formed by normalizing the volume elements of the various information metrics, is also discussed in our context.

1.
R.
Mosseri
and
R.
Dandoloff
,
J. Phys. A
34
,
10243
(
2001
).
2.
K.
Husimi
,
Proc. Phys. Math. Soc. Jpn.
22
,
264
(
1940
).
3.
K.
Życzkowski
and
W.
Słomczyński
,
J. Phys. A
34
,
6689
(
2001
).
4.
5.
R. D.
Levine
,
J. Stat. Phys.
52
,
1203
(
1988
).
6.
A.
Bach
,
Phys. Lett.
73A
,
287
(
1979
).
7.
A.
Bach
,
J. Math. Phys.
21
,
789
(
1980
).
9.
10.
A.
Sugita
and
H.
Aiba
,
Phys. Rev. E
65
,
036205
(
2002
).
11.
R.
Penrose
,
The Road to Reality
(
A. A. Knopf
,
New York
,
2005
).
12.
N. N.
Chentsov
,
Statistical Decision Rules and Optimal Inference
(
American Mathematical Society
,
Providence, RI
,
1982
).
13.
L. L.
Campbell
,
Proc. Am. Math. Soc.
98
,
135
(
1986
).
14.
B. R.
Frieden
,
Science from Fisher Information: A Unification
(
Cambridge University Press
,
Cambridge, MA
,
2004
).
15.
D.
Petz
and
C.
Sudár
,
J. Math. Phys.
37
,
2662
(
1996
).
16.
M. J. W.
Hall
,
Phys. Lett. A
242
,
123
(
1998
).
17.
B. S.
Clarke
and
A. R.
Barron
,
IEEE Trans. Inf. Theory
36
,
453
(
1990
).
18.
B. S.
Clarke
and
A. R.
Barron
,
J. Stat. Plan. Infer.
41
,
37
(
1994
).
19.
20.
L. C.
Kwek
,
C. H.
Oh
, and
X.-B.
Wang
,
J. Phys. A
32
,
6613
(
1999
).
21.
D.
Petz
,
Linear Algebr. Appl.
244
,
81
(
1996
).
22.
P. B.
Slater
,
Lett. Math. Phys.
52
,
343
(
2000
).
24.
S.
Luo
,
J. Stat. Phys.
102
,
1417
(
2001
).
25.
26.
B.
Clarke
,
J. Am. Stat. Assoc.
91
,
173
(
1996
).
27.
M.
Srednicki
,
Phys. Rev. A
71
,
052107
(
2005
).
28.
29.
30.
P. B.
Slater
,
J. Math. Phys.
37
,
2682
(
1996
).
31.
F.
Mintert
and
K.
Życzkowski
,
Phys. Rev. A
69
,
022317
(
2004
).
32.
A.
Lesniewski
and
M. B.
Ruskai
,
J. Math. Phys.
40
,
5702
(
1999
).
33.
A.
Jenčová
,
Int. J. Theor. Phys.
43
,
1635
(
2004
).
34.
S.
Luo
,
Proc. Am. Math. Soc.
132
,
885
(
2003
).
35.
36.
T.
Decker
,
D.
Janzing
, and
T.
Beth
,
Int. J. Quantum Inf.
2
,
353
(
2004
).
38.
C.
Krattenthaler
and
P. B.
Slater
,
IEEE Trans. Inf. Theory
46
,
801
(
2000
).
39.
M.
Hayashi
and
K.
Matsumoto
,
Phys. Rev. A
66
,
022311
(
2002
).
40.
R.
Jozsa
and
S.
Presnell
,
Proc. R. Soc. London, Ser. A
459
,
3061
(
2003
).
41.
R.
Jozsa
,
M.
Horodecki
,
P.
Horodecki
, and
R.
Horodecki
,
Phys. Rev. Lett.
81
,
1714
(
1998
).
42.
H.
Grosse
,
C.
Krattenthaler
, and
P. B.
Slater
(unpublished).
43.
C. M.
Caves
,
C. A.
Fuchs
, and
R.
Schack
,
J. Math. Phys.
43
,
4537
(
2002
).
44.
F.
Pennini
and
A.
Plastino
,
Phys. Lett. A
326
,
20
(
2004
).
45.
S. I.
Amari
,
Ann. Stat.
10
,
357
(
1982
).
46.
J.
Naudts
,
J. Inequal. Pure Appl. Math.
5
,
1
(
2004
).
47.
S.
Gnutzmann
and
K.
Życzkowski
,
J. Phys. A
34
,
10123
(
2001
).
50.
S. L.
Braunstein
,
C. M.
Caves
, and
G. J.
Milburn
,
Phys. Rev. A
43
,
1153
(
1991
).
51.
C. W.
Gardiner
and
P.
Zoller
,
Quantum Noise
(
Springer
,
Berlin
,
2004
).
53.
55.
H. P.
Yuen
and
M.
Lax
,
IEEE Trans. Inf. Theory
19
,
740
(
1973
).
56.
E. F.
Galvão
,
Phys. Rev. A
71
,
042302
(
2005
).
57.
R.
Asplund
and
G.
Björk
,
Phys. Rev. A
64
,
012106
(
2001
).
58.
M. O. T.
Cunha
,
V. I.
Man’ko
, and
M. O.
Scully
,
Found. Phys. Lett.
14
,
103
(
2001
).
59.
60.
A.
Andai
,
J. Math. Phys.
44
,
3675
(
2003
).
61.
P.
Gibilisco
and
T.
Isola
,
J. Math. Phys.
44
,
3752
(
2003
).
62.
63.
L.
Molnár
and
W.
Timmermann
,
J. Phys. A
36
,
267
(
2003
).
64.
M. J.
Gursky
and
C.
LeBrun
,
Geom. Funct. Anal.
8
,
965
(
1998
).
66.
G.
Esposito
,
G.
Marmo
, and
G.
Sudarshan
,
From Classical to Quantum Mechanics
(
Cambridge University Press
,
Cambridge, MA
,
2004
).
67.
H.-J.
Sommers
and
K.
Życzkowski
,
J. Phys. A
36
,
10083
(
2003
).
68.
J.
Naudts
,
Open Syst. Inf. Dyn.
12
,
13
(
2005
).
69.
E.
Lutwak
,
D.
Yang
, and
G. Y.
Zhang
,
IEEE Trans. Inf. Theory
51
,
473
(
2005
).
You do not currently have access to this content.