This paper deals with spectral properties of a class of neutron transport equations involving partly elastic collision operators introduced by Larsen and Zweifel [J. Math. Phys. 15, 1987–1997 (1974)]. In particular, estimates of the essential type of associated semigroups are given.
REFERENCES
1.
S.
Brendle
, “On the asymptotic behaviour of perturbed strongly continuous semigroups
,” Math. Nachr.
226
, 35
–47
(2001
).2.
3.
M.
Borysiewicz
, and J.
Mika
, “Time behavior of thermal neutrons in moderating media
,” J. Math. Anal. Appl.
26
, 461
–478
(1969
).4.
G.
Greiner
, “Spectral properties and asymptotic behavior of the linear transport equations
,” Math. Z.
85
, 167
–177
(1984
).5.
K.
Jörgens
, “An asymptotic expansion in the theory of neutron transport
,” Commun. Pure Appl. Math.
11
, 219
–242
(1958
).6.
M.
Krasnoselskii
, Integral Operators in Spaces of Summable Functions
(Nordhoff
, Leyden
, 1976
).7.
E. W.
Larsen
, and P. F.
Zweifel
, “Spectrum of the linear transport operator
,” J. Math. Phys.
15
, 1987
–1997
(1974
).8.
B.
Lods
, “On linear kinetic equations involving unbounded cross-sections
,” Math. Methods Appl. Sci.
27
, 1049
–1075
(2004
).9.
A.
Majorana
, “Space homogeneous solutions of the Boltzmann equation describing electron-phonon interaction in semiconductors
,” Transp. Theory Stat. Phys.
20
, 261
–279
(1991
).10.
M.
Mokhtar-Kharroubi
, Mathematical Topics in Neutron Transport Theory, New Aspects
, Series on Advances in Mathematics for Applied Sciences
Vol. 46
, (World Scientific
, Singapore
, 1997
).11.
M.
Mokhtar-Kharroubi
, “Optimal spectral theory of neutron transport models
,” J. Funct. Anal.
226
, 21
–47
(2005
).12.
R.
Nagel
, and J.
Poland
, “The critical spectrum of a strongly continuous semigroup
,” Adv. Math.
152
, 120
–133
(2000
).13.
M.
Sbihi
, Ph.D. thesis, Université de Franche-Comté
, 2005
.14.
M.
Sbihi
, “A resolvant approach to the stability of essential and critical spectra of perturbed -semigroups on Hilbert spaces with applications to transport theory
,” J. Evol. Equ.
(to be published); available at: http://www.springerlink.comcontent1424–3202?sortorder=asc&Content+Status=Accepted15.
G.
Schlüchtermann
, “On weakly-compact operators
,” Math. Ann.
292
, 263
–266
(1992
).16.
P.
Takac
, “A spectral mapping theorem for the exponential function in linear transport theory
,” Transp. Theory Stat. Phys.
14
, 655
–667
(1985
).17.
I.
Vidav
, “Spectra of perturbed semigroups with applications to transport theory
,” J. Math. Anal. Appl.
30
, 264
–279
(1970
).18.
J.
Voigt
, “A perturbation theorem for the essential spectral radius of strongly continuous semigroups
,” Monatsh. Math.
90
, 153
–161
(1980
).19.
J.
Voigt
, “Positivity in time-dependent linear transport theory
,” Acta Appl. Math.
2
, 311
–331
(1984
).20.
J.
Voigt
, “Spectral properties of the neutron transport equation
,” J. Math. Anal. Appl.
106
, 140
–153
(1985
).21.
L.
Weis
, “A generalization of the Vidav-Jorgens perturbation theorem for semigroup and its application to transport theory
,” J. Math. Anal. Appl.
129
, 6
–23
(1988
).22.
L.
Weis
, “The stability of positive semigroups on spaces
,” Proc. Am. Math. Soc.
123
, 3089
–3094
(1995
).© 2006 American Institute of Physics.
2006
American Institute of Physics
You do not currently have access to this content.