In this paper, we propose a new completely integrable wave equation: , . The equation is derived from the two dimensional Euler equation and is proven to have Lax pair and bi-Hamiltonian structures. This equation possesses new cusp solitons—cuspons, instead of regular peakons with speed . Through investigating the equation, we develop a new kind of soliton solutions—“W/M”-shape-peaks solitons. There exist no smooth solitons for this integrable water wave equation.
REFERENCES
1.
Ablowitz
, M. J.
, and Segur
, H.
, Soliton and the Inverse Scattering Transform
(SIAM
, Philadelphia, 1981
).2.
Arnol’d
, V. I.
, Mathematical Methods of Classical Mechanics
(Springer-Verlag
, Berlin, 1978
).3.
Camassa
, R.
, and Holm
, D. D.
, “An integrable shallow water equation with peaked solitons
,” Phys. Rev. Lett.
71
, 1661
–1664
(1993
).4.
Chen
, J. H.
, Weng
, H.-R.
, and Dougherty
, P. M.
, “Sensitization of dorsal root reflexes in vitro and hyperalgesia in neonatal rats produced by capsaicin
,” Neuroscience
126
, 734
–751
(2004
).5.
Constantin
, A.
, “On the inverse spectral problem for the Camassa-Holm equation
,” J. Funct. Anal.
155
, 352
–363
(1998
).6.
Constantin
, A.
, and McKean
, H. P.
, “A shallow water equation on the circle
,” Commun. Pure Appl. Math.
52
, 949
–982
(1999
).7.
Dickey
, L. A.
, Soliton Equations and Hamiltonian Systems
(World Scientific
, Singapore, 1991
).8.
Fokas
, A. S.
, Kaup
, D. J.
, Newell
, A. C.
, and Zakharov
, V. E.
, Nonlinear Progresses in Physics
(Springer-Verlag
, Berlin, 1993
).9.
Fuchssteiner
, B.
, and Fokas
, A. S.
, “Symplectic structures, their Baecklund transformations and hereditaries
,” Physica D
4
, 47
–66
(1981
).10.
Gardner
, C. S.
, Greene
, J. M.
, Kruskal
, M. D.
, and Miura
, R. M.
, “Method for solving the Korteweg-de Vries equation
,” Phys. Rev. Lett.
19
, 1095
–1097
(1967
).11.
Lou
, S. Y.
, and Ma
, H. C.
, “Non-Lie symmetry groups of -dimensional nonlinear systems obtained from a simple direct method
,” J. Phys. A
38
, L129
–L137
(2005
).12.
Qiao
, Z. J.
, “The Camassa-Holm hierarchy, -dimensional integrable systems, and algebrogeometric solution on a symplectic submanifold
,” Commun. Math. Phys.
239
, 309
–341
(2003
).13.
Qiao
, Z. J.
, “Generalized -matrix structure and algebro-geometric solution for integrable systems
,” Rev. Math. Phys.
13
, 545
–586
(2001
).14.
Qiao
, Z. J.
et al., “A new integrable hierarchy, its parametric solutions, cuspons, one-peak solitons, and M/W-shape-peaks solitons
,” Commun. Math. Phys.
(submitted).15.
Qiao
, Z. J.
, and Zhang
, G. P.
, “On peaked and smooth solitons for the Camassa-Holm equation
,” Europhys. Lett.
73
, 657
–663
(2006
).© 2006 American Institute of Physics.
2006
American Institute of Physics
You do not currently have access to this content.