In this paper, we propose a new completely integrable wave equation: mt+mx(u2ux2)+2m2ux=0, m=uuxx. The equation is derived from the two dimensional Euler equation and is proven to have Lax pair and bi-Hamiltonian structures. This equation possesses new cusp solitons—cuspons, instead of regular peakons cexct with speed c. Through investigating the equation, we develop a new kind of soliton solutions—“W/M”-shape-peaks solitons. There exist no smooth solitons for this integrable water wave equation.

1.
Ablowitz
,
M. J.
, and
Segur
,
H.
,
Soliton and the Inverse Scattering Transform
(
SIAM
, Philadelphia,
1981
).
2.
Arnol’d
,
V. I.
,
Mathematical Methods of Classical Mechanics
(
Springer-Verlag
, Berlin,
1978
).
3.
Camassa
,
R.
, and
Holm
,
D. D.
, “
An integrable shallow water equation with peaked solitons
,”
Phys. Rev. Lett.
71
,
1661
1664
(
1993
).
4.
Chen
,
J. H.
,
Weng
,
H.-R.
, and
Dougherty
,
P. M.
, “
Sensitization of dorsal root reflexes in vitro and hyperalgesia in neonatal rats produced by capsaicin
,”
Neuroscience
126
,
734
751
(
2004
).
5.
Constantin
,
A.
, “
On the inverse spectral problem for the Camassa-Holm equation
,”
J. Funct. Anal.
155
,
352
363
(
1998
).
6.
Constantin
,
A.
, and
McKean
,
H. P.
, “
A shallow water equation on the circle
,”
Commun. Pure Appl. Math.
52
,
949
982
(
1999
).
7.
Dickey
,
L. A.
,
Soliton Equations and Hamiltonian Systems
(
World Scientific
, Singapore,
1991
).
8.
Fokas
,
A. S.
,
Kaup
,
D. J.
,
Newell
,
A. C.
, and
Zakharov
,
V. E.
,
Nonlinear Progresses in Physics
(
Springer-Verlag
, Berlin,
1993
).
9.
Fuchssteiner
,
B.
, and
Fokas
,
A. S.
, “
Symplectic structures, their Baecklund transformations and hereditaries
,”
Physica D
4
,
47
66
(
1981
).
10.
Gardner
,
C. S.
,
Greene
,
J. M.
,
Kruskal
,
M. D.
, and
Miura
,
R. M.
, “
Method for solving the Korteweg-de Vries equation
,”
Phys. Rev. Lett.
19
,
1095
1097
(
1967
).
11.
Lou
,
S. Y.
, and
Ma
,
H. C.
, “
Non-Lie symmetry groups of (2+1)-dimensional nonlinear systems obtained from a simple direct method
,”
J. Phys. A
38
,
L129
L137
(
2005
).
12.
Qiao
,
Z. J.
, “
The Camassa-Holm hierarchy, N-dimensional integrable systems, and algebrogeometric solution on a symplectic submanifold
,”
Commun. Math. Phys.
239
,
309
341
(
2003
).
13.
Qiao
,
Z. J.
, “
Generalized r-matrix structure and algebro-geometric solution for integrable systems
,”
Rev. Math. Phys.
13
,
545
586
(
2001
).
14.
Qiao
,
Z. J.
 et al., “
A new integrable hierarchy, its parametric solutions, cuspons, one-peak solitons, and M/W-shape-peaks solitons
,”
Commun. Math. Phys.
(submitted).
15.
Qiao
,
Z. J.
, and
Zhang
,
G. P.
, “
On peaked and smooth solitons for the Camassa-Holm equation
,”
Europhys. Lett.
73
,
657
663
(
2006
).
You do not currently have access to this content.