Existence of solutions between prescribed configurations is proved for spatially flat Robertson–Walker spacetimes coupled with homogeneous scalar field sources, using a modified version of the Euler–Maupertuis least action variational principle. The solutions are obtained as limits of approximating variational problems, solved using the techniques originally introduced by Rabinowitz.

1.
A.
Ambrosetti
,
Mem. Soc. Math. Fr. (N.S.)
49
,
1
139
(
1992
).
2.
Y.
Bruhat
,
Acta Math.
88
,
141
225
(
1952
).
3.
D.
Christodoulou
,
Ann. Math.
140
,
607
(
1994
).
4.
D.
Christodoulou
,
Ann. Math.
149
,
183
(
1999
).
5.
R.
Giambó
,
Class. Quantum Grav.
22
,
2295
(
2005
).
6.
R.
Giambó
,
F.
Giannoni
,
G.
Magli
, and
P.
Piccione
,
Commun. Math. Phys.
235
,
545
563
(
2003
).
7.
E.
van Groesen
,
J. Math. Anal. Appl.
132
,
1
12
(
1988
).
8.
E.
van Groesen
, in
Hamiltonian Flow on an Energy Surface: 240 Years After the Euler-Maupertuis Principle
, on “
Geometric Aspects of the Einstein Equations and Integrable Systems
” edited by
R. A.
Martini
Lecture Notes in Physics Vol.
239
, (
Springer
,
New York
,
1985
).
9.
R.
Goswami
,
P. S.
Joshi
, and
P.
Singh
, gr-qc∕0506129.
10.
T.
Hertog
,
G. T.
Horowitz
, and
K.
Maeda
,
Phys. Rev. Lett.
92
131101
(
2004
).
11.
T.
Hertog
,
G. T.
Horowitz
, and
K.
Maeda
, gr-qc∕0405050.
12.
J.
Kijowski
,
D.
Bambusi
, and
G.
Magli
,
Elasticità finita e relativistica: introduzione ai metodi geometrici della teoria dei campi
, Pitagora,
1991
(in italian).
13.
C. W.
Misner
,
K. S.
Thorne
, and
J. A.
Wheeler
,
Gravitation
, (
W. H. Freeman
,
San Francisco
,
1973
).
14.
N. J.
Nunes
, and
J. E.
Lidsey
,
Phys. Rev. D
69
,
123511
(
2004
).
15.
V.
Perlick
,
Living Rev. Relativ.
,
7
(
2004
);
16.
P. H.
Rabinowitz
,
Minimax Method in Critical Point Theory with Applications to Differential Equations
,
CBMS Regional Conf. Series in Math.
, No. 65, (
AMS
,
Providence
,
1986
).
17.
A. G.
Riess
 et al. (
Supernova Search Team Collaboration
),
Astron. J.
116
,
1009
(
1998
).
18.
S.
Tsujikawa
,
Phys. Rev. D
72
,
083512
(
2005
).
19.
R. M.
Wald
,
General Relativity
(
University of Chicago Press
,
Chicago
1984
).
You do not currently have access to this content.